Research Paper

it’s must follow the requirements and format with professional writing supported by evidence, table , graphs and calculations. Also, use other references along with the given ones. 

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Note: must meet the deadline.  

General
Every graduate student will complete an individual study project related to pavement design. This project should include
more than one of the items listed and other items as desired: review of literature, numerical analysis, assessment of
the current state of practice, design methods, suggestions for improvement supported by appropriate analysis, and/or
case studies as closely related as possible. The project deliverable is a paper written in the Transportation Research
Board (TRB) format, which is provided at the link below. Follow formatting for the TRB annual meeting, not the
Transportation Research Record (TRR). The only exception to the formatting requirements is to add a Table of
Contents after the title page. The formatting guidelines take some time to digest, which is part of this year’s exercise.
A key element is the paper written cannot exceed the maximum length requirements. Note these papers are not going
to be submitted to TRB, or anywhere else, this is only for learning purposes.
http://onlinepubs.trb.org/onlinepubs/am/infoforauthors

Topic
This semester there are two topic options. There is some independent thought required for either, and there are also
some specific requirements.

Option 1: AASHTO 1986 or 1993 Empirically Based Investigation
The primary objective is to document how layer coefficients (i.e. ai terms such as a1, a2, a3…have been developed).
These terms are the most important inputs to determining a pavement’s available structural capacity based on the
materials used. Three documents must be referenced as described below, alongside additional sources as needed
(only referencing these three documents won’t result in a good grade, they are just to get the process started).

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

• NCAT Report 14-08
• Florida Study BDV31-977-27
• A study where the Falling Weight Deflectometer (FWD) was used to determine in-situ ai terms

The project is due by (02/12/2020)

AStudy of In Situ Pavement Material Properties

Determined from

FWD

Testing

December 2004

RSCH008-936

Vermont Agency of Transportation

Pavement Design Committee

“The information contained in this report was compiled for the use of the Vermont Agency of

Transportation. Conclusions and recommendations contained herein are based upon the research data

obtained and the expertise of the researchers, and are not necessarily to be construed as Agency policy.

This report does not constitute a standard, specification, or regulation. The Vermont Agency of

Transportation assumes no liability for its contents or the use thereof.”

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
2004-6

4. Title and Subtitle 5. Report Date
December 2004

6. Performing Organization Code

A Study of In Situ Pavement

Material

Properties Determined from FWD Testing

7. Author(s) 8. Performing Organization Report No.

Michael Pologruto, P.E.

9. Performing Organization Name and Address 10. Work Unit No.

11. Contract or Grant No.

Vermont Agency of Transportation
Materials and Research Section

National Life Building
Montpelier, VT 05633-5001

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

14. Sponsoring Agency Code

Federal Highway Administration

Division Office
Federal Building

Montpelier, VT 05602

15. Supplementary Notes

16. Abstract
The Vermont Agency of Transportation (Agency) developed pavement design procedures
patterned after the American Association of State Highway and Transportation
Officials (AASHTO) pavement design model described in the AASHTO 1993 Pavement
Design Guide (Guide). While the Guide provides one of the most widely used
empirical design models for flexible pavement design, a factor complicating its
utility is the use of an abstract quality, the structural number (SN), to quantify
the strength of the total pavement structure. A consequence of the SN is the need
for structural layer coefficients (ai) to characterize the component materials of
the pavement structure. The Agency found it difficult to quantify these design
parameters because they are difficult to assess directly and consequently found it
equally difficult to calibrate the AASHTO model to Vermont conditions.

However, the Agency has developed and tested a method for determining layer
coefficients using a falling weight deflectometer (FWD), and the resulting layer
coefficients are representative of the in situ behavior of the pavement materials.
This method is based on a model provided in the Guide for assessing the effective
SN of a pavement structure. The Agency found layer coefficients determined for
unbound subbases to be reasonable, while layer coefficients estimated for ACC
materials were generally 25-35% higher than AASHTO’s implied maximum of 0.44.
17. Key Words 18. Distribution Statement
Pavement Design, Layer
Coefficient, Falling Weight
Deflectometer, subbase

19. Security Classif. (of this
report)

20. Security Classif. (of this page) 21. No.
Pages

22. Price

17

1

Table of Contents

Executive Summary ………………………………………………………………………………………………………………………… 3

Objective ……………………………………………………………………………………………………………………………………….. 4

Background ……………………………………………………………………………………………………………………………………. 4

AASHTO Method …………………………………………………………………………………………………………………………… 5

Development of Experimental Model ………………………………………………………………………………………………… 5

Pilot Project to Test Experimental Model …………………………………………………………………………………………. 10

Data Analysis ……………………………………………………………………………………………………………………………….. 11

Fwd Results ……………………………………………………………………………………………………………………………… 11

Layer Coefficients …………………………………………………………………………………………………………………….. 11

Final Structure Simulation ………………………………………………………………………………………………………….. 12

Comparative Analysis of Layer Coefficients …………………………………………………………………………………. 13

Discussion of Results …………………………………………………………………………………………………………………….. 14

Conclusions ………………………………………………………………………………………………………………………………….. 17

Recommendations …………………………………………………………………………………………………………………………. 18

References ……………………………………………………………………………………………………………………………………. 20

2

Table of Figures

Figure 1 Seasonal Variation in SN ………………………………………………………………………………………………….. 6

Figure 2 Granular Subbase Behavior ………………………………………………………………………………………………. 8

Figure 3 Subbase Simulation of Layer Coefficient…………………………………………………………………………….. 9

Figure 4 FWD Testing Progression ……………………………………………………………………………………………….. 11

Figure 5 Determination of Layer Coefficients from FWD Testing …………………………………………………….. 12

Figure 6 ACC Layer Coefficient vs. Depth to Subgrade …………………………………………………………………… 16

List of Tables

Table 1 p-values from Paired t-Testing of FWD Computed and Simul 14

Table 2 14

Table 3 17

Table 4 Recommended Material Properties for Design Using the AASH 19

3

EXECUTIVE SUMMARY

The Vermont Agency of Transportation (Agency) developed pavement design procedures patterned after the

American Association of State Highway and Transportation Officials (AASHTO) pavement design model

described in the AASHTO 1993 Pavement Design Guide (Guide). While the Guide provides one of the most

widely used empirical design models for flexible pavement design, a factor complicating its utility is the use

of an abstract quality, the structural number (SN), to quantify the strength of the total pavement structure. A

consequence of the SN is the need for structural layer coefficients (ai) to characterize the component

materials of the pavement structure. The Agency found it difficult to quantify these design parameters

because they are difficult to assess directly, and consequently found it equally difficult to calibrate the

AASHTO model to Vermont conditions.

However, the Agency has developed and tested a method for determining layer coefficients using a

falling weight deflectometer (FWD), and the resulting layer coefficients are representative of the in situ

behavior of the pavement materials. This method is based on a model provided in the Guide for assessing

the effective SN of a pavement structure. The Agency found layer coefficients determined for unbound

subbases to be reasonable, while layer coefficients estimated for ACC materials were generally 25-35%

support for the predictive qualities of FWD derived layer coefficients to approximate layer coefficients

simulated from the in situ conditions expected to prevail in the final pavement structure.

4

OBJECTIVE

Ever since the Vermont Agency of Transportation (Agency) adopted the American Association of State

Highway and Transportation Officials (AASHTO) pavement design method in 1993, one of the most vexing

problems facing Agency pavement designers has been the calibration of the AASHTO pavement design

procedure for Vermont conditions. Key to this calibration is the determination of the layer coefficients

necessary for characterizing Vermont pavement materials. It has been well established by others that there is

no direct method for quantifying the layer coefficient for a particular material. The AASHTO Pavement

Design Guide (Guide) does provide relationships for determining layer coefficients for several pavement

materials (1), however, these relationships were unique to the materials used to build the AASHO Road Test

in the 1950s. The Guide cautions against using the relationships provided to characterize local materials.

The Guide also suggests that each design organization determine relationships unique to the materials they

use to build pavement structures (1). Unfortunately, the Guide stops short of recommending any procedure

that may be used to determine layer coefficients, or how to develop models for predicting layer coefficients

tee (Committee) undertook a

serious investigation into determining layer coefficients for Vermont pavement materials. The Committee

evaluated as much research as was available on the topic before proposing the multi-year investigation

summarized in this report.

BACKGROUND

There have been several investigations reported using a falling weight deflectometer (FWD) to characterize

the structural properties of pavement materials. Zhou, et al. (2), Hossain, et al. (3), and Janoo (4) all used an

FWD in one way or another to determine material properties for the constituent pavement materials, some

conducting FWD testing on top of each material as the structure was being constructed. However, the

Committee did not consider the methods described for determining layer coefficients, utilizing the AASHTO

modulus/coefficient relationships provided in the Guide, desirable.

While the layer coefficient relationships provided in the Guide are convenient and tempting to use

once a resilient modulus has been established, their use is not necessarily appropriate. The Guide gives no

specific direction, but it does emphasize the importance for designers to calibrate various components of the

design model to local conditions and experience before implementing the AASHTO procedure. Layer

coefficients are certainly no exception to this caveat. Layer coefficients themselves are believed to be a

function of material thickness, underlying material support, and stress state. Further, the modulus/coefficient

relationships provided in the AASHTO Guide were developed for AASHO Road Test materials as they were

constructed at the Road Test site in 1958. The usage of these relationships for materials considerably

different from those used at the Road Test is unsubstantiated and can be misleading. Ideally, AASHTO

should have provided a procedure for designers to develop their own layer coefficient relationships for the

5

materials with which they commonly build pavement structures.

The AASHTO approach to flexible pavement performance quantifies the pavement structure as a

structural number (SN) and further divides the pavement structure into three constituent parts: surface, base,

and subbase. Although it is not very clear what conditions or stress states constitute or distinguish the

surface, base, or subbase from each other, the interplay among the three pavement components and how they

work in concert as a single structure is illustrated by Equation 1,

33221

1

DaDaDaSN (1)

where ai represents the layer coefficient and Di is the thickness of the material.

Accordingly, layer coefficients for a particular material can be thought to represent the SN

contribution per unit thickness of that material to the total SN of the pavement structure.

Ideally, what is needed is a way to measure the SN provided by a particular material as a component

of a final pavement structure. This method should be relatively easy to perform so that a variety of

conditions may be surveyed.

AASHTO METHOD

It was not until the publication of the 1993 edition of the AASHTO Guide that a procedure was provided by

AASHTO for determining the in-place SN of a pavement structure using FWD deflection data. This

procedure is described in Appendix L of the 1993 Guide and provides a method for determining the

eff. However, Ioannides expressed concern about the

development of this method, particularly the introduction of mechanistic properties into the

statistical/empirical AASHTO model (5). Regardless, the Committee considered the possibility of deriving

layer coefficients from SNeff

efforts with this model have given this method tacit legitimacy. Specifically, if FWD testing were performed

on the top surface of each component material in a manner similar to that described by Zhou, et al., and

Janoo, the SNeff may be characterized for individual components of a pavement structure. It would follow

that layer coefficients should result from dividing the SNeff-contribution for each material by the thickness of

that material. The veracity of these resulting layer coefficients should then be supported by a comparison

with the layer coefficients that would be expected for the final pavement structure under in situ conditions.

DEVELOPMENT OF EXPERIMENTAL MODEL

The Committee decided to evaluate the SNeff method described in the Guide on several years of seasonal

FWD data initially collected to support the Strategic Highway Research Program (SHRP). Ultimately, over

five years of data, collected at eight different locations throughout the state and representing close to 30,000

deflection basins, provided a comprehensive assessment of the variation in SN for Vermont pavement

structures due to annual seasonal variability. It was observed after spring thaw, a somewhat elusive

6

phenomenon to capture, the SNeff remained fairly stable between days 100 and 300 and exhibited a

coefficient of variation under 10%. This stable time period corresponds very well with the typical April 15

to November 1 construction timeframe established for Agency construction projects. A summary of these

findings for five of the eight sites is illustrated in Figure 1, with SNeff values plotted against the Julian day of

the year (1-365).

SN Seasonal Variation

0

5

10

15

20

25

0 50 100 150 200 250 300 350

Day of year

S
N

Berlin – Site 1 Berlin – Site 2 Charlotte New Haven South Hero

Figure 1 Seasonal Variation in SN

The foregoing findings led the Committee to form several assumptions:

if FWD testing were restricted to the May through October timeframe, fairly stable, essentially

unchanging, effective SNs may be expected at a given location,

barring any extreme fluctuations in temperature or moisture conditions, the SN contribution of any

component material, hence the layer coefficient, should also remain fairly stable during the May

through October timeframe, and

the SN contribution of any pavement structure component is independent of the stress states

produced from the range of loads (6,000 to 16,000 pounds) applied to the surface.

The first two assumptions seemed rather obvious from observation of the data presented in Figure 1.

The third assumption was a result of evaluating the daily results and recognizing that all seasonal locations

were tested using the SHRP FWD protocol, which targets four different loads: 6,000, 9,000, 12,000, and

16,000 pounds. Upon a detailed observation, the effective SNs derived from the SHRP protocol loading

range were surprisingly consistent for a given testing day and the coefficient of variation on the range of

7

effective SNs characteristic for any given day was typically about 1%. Put another way, 95% of the effective

SNs for a particular location and developed during a given day of testing were within less than 1% of the

average SN for that day.

The consistency in the SN was unexpected and truly remarkable. Considering the impulse load

more than doubles during the FWD test, the stress-dependency of the modulus for the unbound materials,

and the visco-elasticity of the asphalt stabilized materials, it seemed highly unlikely that the interplay among

the various material stiffnesses would exactly compensate to provide a constant SN to such a precise degree.

It seemed more plausible that each constituent SN associated with the surface, base, and subbase, should

remain relatively constant on its own.

If the foregoing is true, this last assumption supports the notion that the SNeff established for a

particular material may remain reasonably stable from its placement to its service in the final structure if:

1. All construction and FWD testing activities take place during May through October,

2. No extreme temperature or moisture fluctuations occur prior to FWD testing, and

3. FWD target loads for the base and subbase materials are within the magnitude of stresses likely for

the final structure under normal loadings and do not induce shear failure in the unbound materials.

While strongly implied from the analysis of the seasonal data, the Committee nonetheless attempted

to analytically corroborate the second assumption of a stable SN contribution from any component material.

Unfortunately, this analysis of the SNeff method described in the Guide proved beyond a simple algebraic

manipulation of the SNeff model. A more practicable solution considered was to perform a simulation of the

expected behavior of typical Vermont subbase materials using an elastic layer simulation (ELS).

Two conditions were simulated with the ELS to evaluate the behavior of a pavement structure

subjected to an FWD test. Of particular interest in this simulation is the behavior of the granular subbase

material. Two different stages of the pavement construction were examined. The first condition simulated

the FWD test on the stress-dependent granular subbase resting on a stress-dependent fine-grained subgrade.

The second condition simulated the FWD test of a constant-modulus surface material on stress-dependent

granular base, subbase, and fine-grained subgrade materials. The material properties and performance of the

subbase were compared as illustrated in Figure 2.

8

Figure 2 Granular Subbase Behavior

Resilient moduli for these stress-dependent materials in both simulations were determined using a

simple K-theta model as illustrated in Equation 2,

2

1

k

R
kM (2)

where: MR is the resilient modulus,

k1 and k2 are material-specific regression constants, and

Under the initial conditions, FWD tests were simulated on the surface of each component material.

This was a straightforward analysis from which deflections, loading plate pressures, and subgrade properties

were readily available. However, when simulating the final condition, the loading plate pressures for the

soils engineers may agree on a Boussinesq stress-distribution for a point load, a typical pavement structure

does not behave the same as an equivalent, relatively homogeneous, soil mass. A different approach is

necessary to model the stress-distribution occurring beneath a circular load on a relatively stiff upper layer

into a less stiff (by an order of magnitude) unbound aggregate. Noureldin and Al Dhalaan (6) proposed a

stress-

the loading plate to a circular area with a radius corresponding to the depth from the surface within a depth

BaseYields an SNeff, but does this equal
the SNeff contributed by the subbase

in the final structure?

Subgrade

Subbase

Surface

FWD

FWD

9

ral numbers for base and subbase materials in the

final structure simulation.

Subbase layer coefficients determined from the simulation results of the initial condition described

above were generally within 5% of the layer coefficients determined for the subbase performing in the final

condition and are illustrated in Figure 3. The Committee interpreted the results of this pavement simulation

to validate the assumption that the SN for any component of a pavement structure may remain stable enough

for the design of flexible pavement structures. Without finding any research to contradict the findings of the

simulation, the Committee decided to sponsor a pilot study to determine real world layer coefficients from

FWD testing.

0.950

1.000

1.050

1.100

1.150

14,000 16,000 18,000 20,000 22,000 24,000 26,000 28,000 30,000 32,000

Subbase Modulus – K1 (psi)

Subbase Simulation of Layer Coefficient

Initial to Final Condition

R
a
ti

o
o

f
a

3

K
2

=

0.6

K
2

=

0.4

K
2

= 0.5

Figure 3 Subbase Simulation of Layer Coefficient

In summary, the layer coefficient determination model consisted of the following steps:

1) Assume the SN for any material is a fixed property and remains constant throughout the

construction operation, after it has reached its design condition,

2) Collect FWD deflection data on the top surface of each pavement material, during the

construction season of April 15 through November 1,

3) Use backcalculation software to determine the subgrade MR at the centerline of the load for each

10

FWD test,

4) Correct any deflections taken directly on the pavement, or asphalt cement concrete (ACC), to 68°

F,

5) Determine the SNeff appropriate for each successive build-up of pavement material, and

6) Determine each layer coefficient for each material by taking the difference in the SNeff

determined directly on top and directly below the material layer, and dividing by the material thickness.

Note: The SNeff on top of the subgrade is defined as zero.

PILOT PROJECT TO TEST EXPERIMENTAL MODEL

The next step was to identify a pilot project and collect real data representative of materials used for the

construction of pavement structures in Vermont.

Since analysis of the seasonal data would seem to indicate the drop weight used has little effect on

the SNeff finally determined for any given pavement structure, this study focused on the deflection basins

generated by a single target weight for each material. The target drop weights applied on the surface of each

material were consistent with the effects that would be expected from a 100-psi tire pressure applied at the

plate pressures below 10 psi difficult. This only presented a concern with the sand subbase, which should

have been tested using a pressure in the range of two to three psi. But, testing the sand subbase at 10 psi

yielded no evidence of shear failure due to overstressing and backcalculation results exhibited root-mean-

square (RMS) variations from the FWD-measured deflection basins of less than 25%. The Committee

considered this compromise to be satisfactory for a sand subbase.

The layer coefficients for the pilot project were 0.074, 0.163, and 0.639 for the sand borrow

subbase, dense-graded crushed stone (DGCS), and ACC, respectively. These findings were encouraging

since the layer coefficients established for the unbound materials were within the ranges established by

AASHTO for these materials.

The layer coefficient for the ACC was not discounted outright. Although 0.639 is almost 50%

higher than the 0.44 upper limit established by AASHTO for ACC surface course, two other indicators of

layer coefficients for ACC, a Marshall stability of 2,730 lbf. and a resilient modulus of 580,000 psi, were

also beyond the upper AASHTO limits of 2,100 lbf. and 450,000 psi respectively.

The findings from the data analysis of the pilot project were encouraging. Consequently, the

Committee considered the experimental model developed thus far to be a success. The Committee endorsed

further collection of FWD data, using the experimental model developed with the pilot project, at several

more projects to determine if the method developed was capable of providing satisfactory estimates of

material properties and that these properties are representative of in-service performance. In all, nearly 50

test sites were evaluated for this next phase of the research.

11

DATA ANALYSIS

FWD Results

Backcalculations were performed on all deflection basins to determine the resilient modulus of the subgrade,

a necessary input for the SNeff calculations. Two independent applications were used: ELMOD 4.0 and

EVERCALC 5.0. These two applications perform similar functions, using different algorithms. Both

attempt to achieve convergence between the FWD measured deflection basin and a calculated deflection

basin based on the backcalculated layer moduli.

lent thickness

developed by Odemark and described by Ullidtz (7), was used to spot check a random sample of ELMOD

and EVERCALC output, to ensure reliability of the backcalculation results.

In order to control the quality of the backcalculation findings, goodness-of-fit thresholds were

established for deflection basins taken on the sand, DGCS, and ACC surfaces of 25, 10, and 2% RMS,

respectively. That is, if a backcalculation for a sand deflection basin could not produce a solution with an

RMS less than 25%, that site was removed from further consideration in this study. Similarly, if either the

DGCS or ACC backcalculation failed to meet the appropriate RMS threshold, the entire site was considered

compromised and removed from the study. Figure 4 illustrates how the SNeff progresses as FWD testing is

conducted on each successive pavement material.

Figure 4 FWD Testing Progression

Layer Coefficients

The estimation of layer coefficients (ai) uses the SNeff contributed by each pavement material. Figure 5

Subgrade

S

and

DGCS

ACC

SNeff=10.71

FWD
FWD
FWD

SNeff=5.37

SNeff=1.52

12

illustrates as the SNeff is established for each material interface, the change in SNeff for any two adjacent

material interfaces represents the SN contribution for the material bounded by these adjacent interfaces. The

resulting layer coefficient is the SN contribution for any particular material divided by the thickness of that

material layer. But, if the thickness has not been accurately assessed, this will have a corresponding adverse

effect on the layer coefficient.

Subgrade
Sand
DGCS
ACC
SNeff=10.71
SNeff=5.37

SNeff= 0

t = 7.54 in.

t = 24.36 in.

t = 19.80 in.

SNeff=1.52

SNACC = 10.71-5.37 = 5.34

and

aACC = 5.34÷7.54 = 0.708

SNDGCS = 5.37-1.52 = 3.85

and

aDGCS = 3.85÷24.36 = 0.158

SNSand = 1.52, and

aSand = 1.52÷19.80 = 0.077

Figure 5 Determination of Layer Coefficients from FWD Testing

The development of layer coefficients using the procedure just outlined is relatively easy and

applicable to the materials in question. The issue of whether layer coefficients developed in this manner are

characteristic of material performance of the final (in-place) structure and appropriate for design must be

supported.

Final Structure Simulation

When evaluating the suitability of layer coefficients for use as design parameters, the only pertinent standard

should be their prediction of layer coefficient behavior in the final structure. Ideally, a fully instrumented

pavement structure, with a full array of stress and strain sensors to monitor the behavior of each material

interface, would provide the necessary data to make this comparison. However, based on past experience,

the Committee considered subsurface instrumentation too unreliable.

Instead, an ELS was conducted to simulate the response of the final structure. The simulation was

carried out on a model of the final structure using the actual layer thickness and backcalculated resilient

modulus for each material.

13

calculated below the

surface as proposed by Noureldin and Al Dhalaan, to simulate the behavior of the final structure under an

FWD load and to estimate the SNeff at each material interface. Once the SNeff was determined at the surface

of each material, the layer coefficients were calculated as illustrated previously in Figure 5.

Comparative Analysis of Layer coefficients

In all, six experimental projects amounting to almost 50 test sites were evaluated to establish the significance

between calculating layer coefficients from FWD testing and how well they represent the in situ conditions

estimated by simulation of the final structure. Although cursory observation revealed satisfactory agreement

between centerline deflections measured with the FWD and deflections predicted by the ELS, a more

detailed statistical analysis of the layer coefficients developed from FWD test data and the ELS was done

to

provide a more objective means of establishing that no significant difference existed between the results of

the two methods. If no statistically significant difference is found, then any distinction observed may be

attributable to normal variation in the material properties i.e., the materials do not exhibit linear elastic,

isotropic, and homogeneous properties and normal error in data acquisition. Also, if both methods yield

similar results, it would further substantiate the assumption that the SN contributed by a pavement material is

a fixed property and, more importantly, layer coefficients determined via FWD tests are suitable for design

of the final structure.

The statistical analysis was carried out using a paired t Test, which assumes the difference between

pairs of data to average zero. Ordinarily, a low p-value (a statistical metric that quantifies the rarity of an

occurrence) resulting from a paired t Test indicates little relationship between the two data sets being

compared. For this research, a high p-value (>0.05) suggests a statistically significant correlation exists

between the paired data sets. Thus, the p-values determined by this analysis indicate the layer coefficients

determined via FWD tests are suitable for design of the final structure as indicated in Table 1.

-value (that is, for those results determined at each project

-value (representing the results of an analysis carried out as the

results of each successive project are added to the cumulative database). These results indicate a significant

level of agreement, or correlation between, the two data sets suggesting no statistically significant difference

exists between the two methods: FWD- and ELS-derived layer coefficient determinations. Thus, it may be

concluded, with a high degree of certainty, that FWD-derived layer coefficients are sufficiently accurate to

predict in situ behavior to be useful pavement design parameters.

14

Table 1 p-values from Paired t-Testing of FWD Computed and Simulated Layer Coefficients

p-value (at 95% level of confidence)

Project specific Research cumulative

Vergennes-Ferrisburgh 0.29 0.29

Montpelier State Highway 0.48 0.34

Bolton-South Burlington 0.10 0.28

Burlington 0.09 0.13

Colchester 0.09 0.33

Addison 0.09 0.32

DISCUSSION OF RESULTS

As the results of the statistical analysis supported

determined from FWD testing are sufficiently representative of in situ conditions (exhibited via simulation of

the final structure) an evaluation of the results determined up to this point was warranted.

A summary of the findings for the first six projects studied in this investigation are presented in

Table 2, listing the layer coefficients and resilient moduli so far determined and the number of test locations

for which all quality control criteria were met.

Table 2 Summary of Material Properties for First Six Projects

Sand DGCS ACC I ACC II ACC III ACC IS ACC IIS ACC IIIS

ai 0.073 0.152 0.386 0.687 0.855 0.839 0.588 0.495

Mr (psi) 18,900 41,900 397,000 343,000 360,000 321,000 153,000 346,000

N 47 47 30 30 30 15 17 17

Of particular interest are the layer coefficients determined for the unbound materials. The sand

the fact that this material is much deeper than the unbound subbase materials were at the Road Test. Since

the sand is placed so deeply in Vermont pavement structures, where it would experience lower stress states

than Road Test unbound subbases, it may be performing like a fine-grained material and may explain why

the resilient modulus of 18,900 psi falls on the high side of the AASHTO scale, in relation to the layer

coefficient. The value of 0.152 for the DGCS falls on the higher end of the range established by AASHTO

for an unbound base material. This higher layer coefficient is consistent with the higher resilient modulus of

41,900 psi determined for DGCS and also conforms to the behavior one would expect of a stress-stiffening

coarse-graded granular material. By comparison, laboratory testing of these materials has established

15

estimates of the resilient modulus to be 25-35% of the backcalculated resilient modulus for sand (8) and 30-

45% of the backcalculated resilient modulus for DGCS (9).

Probably the most conspicuous eccentricity with the results established thus far in this effort is the

unusually high layer coefficients established for the ACC materials. Although there appears to be nothing

fundamentally wrong with the layer coefficients determined for the ACC materials i.e., the same procedure

was used to derive reasonable unbound layer coefficients and the elastic layer simulation would seem to

indicate an accurate prediction of in-place behavior their use with the AASHTO design model presented

some concerns. Most obviously, any layer coefficients over 0.50 represent a range of conditions as of yet

unsubstantiated for the empirically derived AASTHO model. Also, the ACC layer coefficients developed

under this investigation were established for materials that were designed using much lower layer coefficients

(0.32-0.39) with the AASHTO model. And finally, if the layer coefficients presented here (>0.50) are used

for an AASHTO design under typical Vermont traffic loading, almost no base material (DGCS) is called for

because all of the strength (SN) is provided by a few inches of ACC. The Committee considered several

mechanisms likely to generate layer coefficients outside the traditional range established by AASHTO.

First, environmental conditions in Vermont necessitate thick pavement structures to mitigate the

effects of frost penetration. These substantial structures are likely far beyond anything studied at the Road

Test.

ikely to be different from,

if not an improvement upon, those materials from which the AASHTO relationships have been derived.

Vermont is fortunate to have readily available, high-quality, and affordable aggregates. The Agency has also

traditionally used stiff asphalt cements and high compactive efforts in an attempt to minimize distresses

Third, the ELSs were conducted using the elastic moduli determined from backcalculations of the

FWD deflection basins taken on the surface of the finished pavement structure. Even though many of the

ACC moduli were consistently in excess of the 450,000-psi upper limit published by AASHTO, the layer

coefficients determined via ELS still corroborated the layer coefficients determined from the FWD deflection

data.

And finally, the FWD measures in situ behavior. It is not unreasonable to contend that laboratory-

supported AASHTO modulus/coefficient relationships may not accurately predict in situ behavior for any

material, whether unbound or asphalt stabilized. Indeed, Figure 6 illustrates how the ACC layer coefficients

Interestingly enough, when analyzed using the top of the unbound portion of the structure as the subgrade,

the ACC layer coefficients thus determined cluster within the more traditional range of 0.20-0.44 established

for ACC materials used in the AASHTO model. This interplay between ACC layer coefficients and its

support structure may be analogous to the synergism of a concrete bridge deck supported by steel girders.

Neither is adequate to the task in isolation, but when acting in unison, they achieve an effect of which each is

16

individually incapable.

ACC Layer Coefficients vs. Depth to Subgrade

0

0.2

0.4
0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

De pth to Subgrade (in)

A
C

C
L

a
y

e
r
C

o
e
ff

ic
ie

n
t

assumed

on top of

stone

assumed
on top of

sand

ordinarily

defined

Figure 6 ACC Layer Coefficient vs. Depth to Subgrade

Valid resilient moduli for the various types of ACC (I, II, III, etc.) materials used by Agency

designers may have to be determined indirectly, since backcalculation limitations cannot distinguish such

subtleties within the FWD loading plate radius of the testing surface. Marshall stabilities were considered

useful for estimating the resilient moduli of the ACC materials, assuming there exists a correlation between

Marshall stabilities and resilient moduli (a notion implied by AASHTO). The Marshall stabilities may give

an indication of the relative proportions of the individual resilient moduli compared to the resilient modulus

backcalculated for the total ACC thickness. Another possibility may be an indirect tension test (like ASTM

D4123), which establishes the resilient modulus for ACC samples. For this investigation, Marshall stabilities

were used, when available, as a proxy to isolate the resilient moduli for different ACC types.

At this time, it is uncertain why there exist such marked disparities between the layer coefficients

determined for Marshall and Superpave materials. The Committee debated this issue extensively and finally

conceded that Marshall and Superpave mixes are two different materials and layer coefficients may simply

be one more manifestation of these differences. The Committee endorsed further study to bolster or refute

some of these concerns with the ACC properties.

Ten additional projects were identified for further study to allow for additional data collection and

to improve the predictive capabilities of the subsequent estimates. Another benefit to further study was the

potential for investigation into additional materials. Two of the additional projects used gravel for subbase

17

instead of the DGCS usually required on the State system. One Interstate project provided for an

rvice for nearly

40 years. Also novel to the Interstate project was an experimental material to provide for better drainage: an

asphalt-treated permeable base (ATPB).

Table 3 summarizes the properties established from all 16 projects investigated.

Table 3 Summary of Material Properties

Material

Layer Coefficient Resilient Modulus (psi)

N

Standard

deviation
Average 95% Pre. N

Standard

deviation
Average. 95% Pre.

Sand 139 0.013 0.078 2.9% 139 10,200 19,100 9.0%

Gravel 21 0.033 0.134 11.1% 21 12,500 29,600 19.2%

Old stone 21 0.021 0.102 9.2% 19 12,100 26,200 22.2%

DGCS 164 0.032 0.137 3.6% 164 16,800 29,700 8.7%

ATPB 21 0.067 0.398 7.7% 21 64,700 110,500 26.6%

ACC I 75 0.190 0.483 9.1% 76 169,800 357,600 10.8%

ACC II 62 0.284 0.630 11.5% 62 188,600 347,500 13.8%

ACC III 76 0.517 0.844 14.0% 76 200,500 304,500 15.0%

ACC IS 83 0.256 0.536 10.4% 21 85,300 191,200 20.2%

ACC IIS 102 0.184 0.504 7.2% 40 44,100 140,600 10.0%

ACC IIIS 93 0.170 0.533 6.6% 65 213,100 322,500 16.4%

ACC IVS 35 0.223 0.570 13.4% 35 49,700 92,400 18.5%

In addition to the number of data points (N), the standard deviation, and the average, Table 3

includes the level of precision on the average at the 95% level of confidence. Put another way, the level of

precision ensures that if one were to use the average value for design, it would be reasonable to assume that

the value provided under conditions of actual performance would be within the precision indicated 95% of

the time.

CONCLUSIONS

The AASHTO guide describes a procedure for determining the effective SN provided by a pavement

structure from FWD deflection data. While Ioannides presented compelling justification for questioning the

theoretical purity of this concept, the success of its practical application as investigated by this research is

difficult to ignore.

When FWD testing is conducted during the April 15 through November 1 construction season, and

no drastic temperature and moisture fluctuations occur, the SNeff and resulting layer coefficient associated

with a particular component of a pavement structure appear to remain reasonably stable, even after additional

material is placed.

The stress distribution described by Noureldin and Al Dhalaan appears to provide a reasonably

accurate portrayal of the effective plate radius that develops below the surface of a pavement structure for an

applied circular load, without which the simulated layer coefficients would have been difficult to determine.

18

It is paramount to accurately and precisely determine the thickness of each material being evaluated.

Depending upon the material, any error in the thickness assessment can have a corresponding error in the

layer coefficient determination, e.g., a 25% thickness error may lead to a 25% error in the layer coefficient

determination. While this magnitude of error is not desirable in any of the materials, it can certainly have

alarming consequences with the stiffer and thinner ACC materials.

The layer coefficients determined for the unbound materials appear reasonable, while the ACC layer

coefficients are outside the range typical for the AASHTO procedure. However, there does appear to be

substantiation for these higher ACC layer coefficients from other material properties, namely the Marshall

stabilities and backcalculated resilient moduli. Further, all the layer coefficients determined by the method

developed under this investigation are reasonably accurate estimates of the in situ behavior simulated by

elastic layer theory. Indeed, such high correlation between these two different procedures would be highly

unlikely, considering the variables that lead to their development.

Whether by serendipity or by design, the development of the AASHTO effective SN procedure

provides designers with a very powerful tool for the determination of layer coefficients.

RECOMMENDATIONS

Considering the emphasis that will be placed upon mechanistic design in the next version of the AASHTO

to

calibrate the AASHTO pavement design model to Vermont materials and the conclusion to that effort as

conjunction with the current AASHTO pavement design model. The Committee considered the 85
th

percentile for ACC layer coefficients to ensure reasonableness of designs provided by the model.

Any follow up research should focus on supplementing the database for the mechanistic properties

thus far established. Work should continue on the resilient modulus for all unbound materials and the

pavement design guide for ACC materials.

19

Table 4 Recommended Material Properties for Design Using the AASHTO Model

Material
Layer Coefficient Resilient Modulus (psi)

N
Standard

deviation
Average Rec. N

Standard

deviation
Average Rec.

Sand 139 0.013 0.078 0.078 139 10,200 19,100 19,100

Gravel 21 0.033 0.134 0.134 21 12,500 29,600 29,600

Old stone 21 0.021 0.102 0.102 19 12,100 26,200 26,200

DGCS 164 0.032 0.137 0.137 164 16,800 29,700 29,700

ATPB 21 0.067 0.398 0.331 21 64,700 110,500 110,500

ACC I 75 0.190 0.483 0.293* 76 169,800 357,600 357,600

ACC II 62 0.284 0.630 0.346 62 188,600 347,500 347,500

ACC III 76 0.517 0.844 0.327 76 200,500 304,500 304,500

ACC IS 83 0.256 0.536 0.280* 21 85,300 191,200 191,200

ACC IIS 102 0.184 0.504 0.320 40 44,100 140,600 140,600

ACC IIIS 93 0.170 0.533 0.363 65 213,100 322,500 322,500

ACC IVS 35 0.223 0.570 0.347 35 49,700 92,400 **

* If an ATPB is used, the layer coefficient for the base course (either ACC I or ACC IS) should be

increased to at least the 0.331 used for the ATPB.

** At this time, there is no recommendation for the ACC IVS resilient modulus.

ACKNOWLEDGEMENTS

This research would not have been possible without the persistent hard work of Duane Stevens and Jim

Pavement Design Committee, particularly Chris Benda, Jim Bush, Mike Hedges, Alec Portalupi, and Roger

Lyon-Surrey, for advice and review of the findings.

20

REFERENCES

(1) AASHTO Guide for Design of Pavement Structures. American Association of State Highway and

Transportation Officials, Washington, D.C., 1993.

(2) Zhou, H., G.R. Rada, and G.E. Elkins. Investigation of Backcalculated Moduli Using Deflections

Obtained at Various Locations in a Pavement Structure. In Transportation Research Record 1570, TRB,

National Research Council, Washington, D.C., 1997, pp. 96-107.

(3) Hossain, M., A. Habib, and T.M. LaTorella. Structural Layer Coefficients of Crumb Rubber-Modified

Asphalt Concrete Mixtures. In Transportation Research Record 1583, TRB, National Research Council,

Washington, D.C., 1997, pp. 62-70.

(4) Janoo, V.C. Layer Coefficients for NH DOT Pavement Materials. Special Report 94-30, U.S. Army

Corps of Engineers, Cold Regions Research & Engineering Laboratory, September, 1994.

(5) Ioannides, Anastasios M. Theoretical Implications of the AASHTO 1986 Nondestructive Testing

Method 2 for Pavement Evaluation. In Transportation Research Record 1307, TRB, National Research

Council, Washington, D.C., 1991, pp. 211-220.

(6) Noureldin, A.S. and M.A. Al Dhalaan. Establishment of Some Structural Parameters to Pavement

Evaluation Using the Falling Weight Deflectometer. A presentation given at the 70
th

TRB Annual Meeting,

Washington, D.C., January 1991.

(7) Ullidtz, P. Modeling Flexible Pavement Response and Performance. Polyteknisk Forlag, Denmark,

1998.

(8) Chitty, Daniel E., Blouin, Scott E., Quenneville, Steven R., and Beckwith, Daniel B. Laboratory Tests

and Analysis: Resilient Modulus and Low Strain Rate Modulus Testing of Sands. ARA Report Number

4835-2, Applied Research Associates, Inc., South Royalton, Vermont, June, 2001.

(9) Janoo, Vincent C. and Bayer II, John J. The Effect of Aggregate Angularity on Base Course

Performance. Technical Report ERDC/CRREL TR-01-14, U.S. Army Corps of Engineers, Cold Regions

Research & Engineering Laboratory, September, 2001.

SYNTHESIS/LITERATURE REVIEW FOR DETERMINING STRUCTURAL
LAYER COEFFICIENTS (SLC) OF BASES

FINAL REPORT

Sponsored by the Florida Department of Transportation Research Center
Contract Number

BDV31-977-2

7

Dr. Dennis R. Hiltunen, P.E.
Principal Investigator

DEPARTMENT OF CIVIL & COASTAL ENGINEERING

UNIVERSITY OF FLORIDA

December 201

4

2

DISCLAIMER

The opinions, findings, and conclusions

expressed inthis publication are those of the
authors and not necessarily those of the State
of Florida Department of Transportation or the

U.S. Department of Transportation.

Prepared in cooperation with the State of
Florida Department of Transportation and the

U.S. Department of Transportation.

3

METRIC CONVERSION TABLE

4
METRIC CONVERSION TABLE

5

1. Report No.

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

Synthesis/Literature Review for Determining Structural Layer
Coefficients (SLC) of Bases

5. Report Date

December 20

14

6. Performing Organization Code

7. Author(s)

Dennis R. Hiltunen
8. Performing Organization Report No.

9. Performing Organization Name and Address

Department of Civil and Coastal Engineering
University of Florida
365 Weil Hall, P.O. Box 116580
Gainesville, FL 32611-6580

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

BDV31-977-

27

12. Sponsoring Agency Name and Address

Florida Department of Transportation
605 Suwannee Street, MS

30

Tallahassee, FL 3239

9

13. Type of Report and Period Covered

Final Report
June 2014-December 2014

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

FDOT’s current method of determining a base material structural layer coefficient (SLC) is detailed in the
Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials.
Currently, any new base material not approved under FDOT specifications must undergo (1) laboratory
testing, (2) test pit investigation, and (3) a project test section for constructability and roadway performance
evaluation to determine a SLC for design purposes. The test section evaluation phase can take up to five
years to compare the pavement performance of the new base material with a limerock base control section.
In this project, a thorough review of literature has been conducted of current and past practices for the
determination of structural layer coefficients (SLC) of pavement base materials. The review organizes the
methodologies into

three broad categories: (1) methods that determine SLCs via relationships with other

material parameters; (2) methods that determine SLCs via estimates of the structural number (SN) of
existing and available pavement sections; and (3) methods that establish SLCs via equivalencies with a
reference material. Several of the strategies reviewed provide opportunities for estimating SLCs of both
traditional and new base course materials in a more accelerated fashion and in considerably less time than
the five years often required at present.

17. Key Word

AASHTO pavement design, base materials,
structural layer coefficient, structural number

18. Distribution Statement

No Restrictions

19. Security Classif. (of this report)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of Pages

33 Pages
22. Price

6

EXECUTIVE SUMMARY

FDOT’s current method of determining a base material structural layer coefficient

(SLC) is detailed in the Materials Manual, Chapter 2.1, Structural Layer Coefficients for

Flexible Pavement Base Materials. Currently, any new base material not approved

under FDOT specifications must undergo (1) laboratory testing, (2) test pit investigation,

and (3) a

project test section for constructability and roadway performance evaluation to

determine a SLC for design purposes. The test section evaluation phase can take up to

five years to compare the pavement performance of the new base material with a

limerock base control section. In this project, a thorough review of literature has been

conducted of current and past practices for the determination of structural layer

coefficients (SLC) of pavement base materials. The review organizes the methodologies

into three broad categories: (1) methods that determine SLCs via relationships with

other material parameters; (2) methods that determine SLCs via estimates of the

structural number (SN) of existing and available pavement sections; and (3) methods

that establish SLCs via equivalencies with a reference material. Several of the

strategies reviewed provide opportunities for estimating SLCs of both traditional and

new base course materials in a more accelerated fashion and in considerably less time

than the five years often required at present.

7

TABLE OF CONTENTS

page

DISCLAIMER…………………………………………………………………………………… 2

METRIC CONVERSION TABLE……………………………………………………………… 3

TECHNICAL REPORT DOCUMENTATION PAGE…………………………………………5

EXECUTIVE SUMMARY………………………………………………………………………. 6

CHAPTER 1 – INTRODUCTION …………………………………………………………………………. 9 

CHAPTER 2 – MATERIAL PARAMETER RELATIONSHIPS …………………………………. 11 

CHAPTER 3 – STRUCTURAL NUMBER (SN) OF PAVEMENT SECTIONS ……………. 15 

3.1 Introduction …………………………………………………………………………………………. 15 
3.2 SN from Performance Relationship …………………………………………………………. 15 
3.3 SN from FWD Deflections ……………………………………………………………………… 18 

CHAPTER 4 – EQUIVALENCY WITH REFERENCE MATERIAL …………………………… 22 

4.1 Introduction …………………………………………………………………………………………. 22 
4.2 Material Property Criterion …………………………………………………………………….. 22 
4.3 Pavement Response Criterion ……………………………………………………………….. 24 
4.4 Pavement Performance Criterion ……………………………………………………………. 26 

CHAPTER 5 – CONCLUSIONS …………………………………………………………………………. 29 

LIST OF REFERENCES ………………………………………………………………………………….. 30 

8

LIST OF FIGURES

Figure page

1 Variation in Granular Base Layer Coefficient (a2) with Various

11

Material Parameters (from AASHTO 1993)

9

CHAPTER 1
INTRODUCTION

The Florida Department of Transportation’s (FDOT) Flexible Pavement Design

Manual, March 2008, provides procedures for determining the design thickness of base

course materials. In these procedures, layer coefficients have been developed that

represent the relative strength of different pavement materials in Florida. Standard

Index 514 identifies the structural layer coefficient (SLC) for combinations of base types

and thicknesses for general and limited use optional bases. Contractors can select from

the base materials shown on the Typical Section Sheet or from Standard Index 514.

Except as limited by Standard Index 514 or as may be justified by special project

conditions, the options for base material are not restricted. Allowing a contractor the full

range of base materials will permit the contractor to select the least costly material,

resulting in the lowest bid price.

FDOT’s current method of determining a base material SLC are detailed in the

Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement

Base Materials. Currently, any new base material not approved under FDOT

specifications must undergo (1) laboratory testing, (2) test pit investigation, and (3) a

project test section for constructability and roadway performance evaluation to
determine a SLC for design purposes. The test section evaluation phase can take up to
five years to compare the pavement performance of the new base material with a

limerock base control section. Materials that perform equivalently to a limerock control

section may obtain a recommendation of a SLC of 0.18 in/in.

The objective of this project was to produce a synthesis of current and past

practices for the determination of structural layer coefficients (SLC) of pavement base

10

materials. A thorough review of literature has been conducted and is presented in the

following sections. The synthesis does not rank or evaluate the differences or

advantages of various methods. In general, the review organizes the methodologies into

three broad categories: (1) methods that determine SLCs via relationships with other

material parameters, (2) methods that determine SLCs via estimates of the structural

number (SN) of existing and available pavement sections, and (3) methods that

establish SLCs via equivalencies with a reference material. The three categories are

discussed sequentially in the following sections.

11

CHAPTER 2
MATERIAL PARAMETER RELATIONSHIPS

The AASHTO Guide for Design of Pavement Structures (AASHTO 1993)

provides a chart (Figure 1) for determining the structural layer coefficient of granular

base materials using various known material parameters, such as California Bearing

Ratio (CBR) and elastic (resilient) modulus. Alternatively, the following equation may be

used to estimate the SLC for a granular base material, a2, from its elastic modulus, EBS

(AASHTO 1993):

a2 = 0.249(log10EBS) – 0.977 (1)

Figure 1. Variation in Granular Base Layer Coefficient (a2) with Various Material
Parameters (from AASHTO 1993)

A number of researchers have utilized these relationships to determine SLCs for both

traditional and new base course material applications.

12

 Bahia et al. (2000) determined the SLC of reprocessed asphaltic mixtures used

in Wisconsin as base materials via the AASHTO correlation with elastic (resilient)

modulus. The resilient modulus of the materials was measured with standard

laboratory techniques. Trends observed in resilient modulus compared with

measured rutting performance of the materials did not match, and the

researchers suggest that SLC determination should combine both elastic and

damage behavior of pavement materials.

 Baus and Li (2006) determined the SLC of various graded aggregate bases used

in South Carolina via the AASHTO correlation with elastic (resilient) modulus.

The resilient modulus of the materials was measured with a plate load method in

test pit experiments. The researchers were concerned to report SLC values

ranging from 0.05 to 0.24 for the various graded aggregates investigated, despite

the fact that South Carolina uses a constant value of 0.18 for all graded

aggregate bases.

 Butalia et al. (2011) determined the SLC of full-depth reclaimed asphalt

pavements mixed with coal ash, lime, and lime kiln dust used as a base material

in Ohio via the AASHTO correlation with elastic (resilient) modulus. Full-depth

reclamation (FDR) is a recycling technique where the existing asphalt pavement

and a predetermined portion of the underlying granular material are blended to

produce an improved base course. The resilient modulus of the materials was

determined via backcalculation from measured falling weight deflectometer

(FWD) deflections on the actual reclaimed pavement sections. For one test

pavement, the SLCs estimated from resilient modulus ranged from 0.27 to 0.54

13

(with an average of about 0.35), following reclamation with fly ash and lime, while

the SLCs for the control section (no admixture, just mill and overlay) were much

lower (average of about 0.1). For a second test pavement, the researchers report

SLCs from resilient modulus as follows: (1) 0.35 to 0.45 with an average of about

0.37 for a section reclaimed with fly ash and lime kiln dust; (2) 0.25 to 0.5 with an

average of about 0.4 for a section reclaimed with fly ash and lime; (3) 0.4 to 0.5

with an average of about 0.46 for a section reclaimed with cement; and (4) much

lower values for the control section (no admixture, just mill and overlay).

 Janoo (1994) determined the SLC of various base materials used in New

Hampshire via the AASHTO correlations with both elastic (resilient) modulus and

CBR. The base materials investigated included crushed gravel, reclaimed

asphalt and gravel base stabilized with asphalt, asphalt concrete base, and

pavement millings. The resilient modulus of the materials was determined via

backcalculation from measured FWD deflections on 10 experimental pavement

test sections. The CBR values were determined via correlation with measured

results from Clegg hammer and dynamic cone penetrometer (DCP) tests on the

10 experimental pavement test sections. Further comments on the Janoo (1994)

results are found in Section 3.3 below.

 Rada and Witczak (1983) determined the SLC of various graded aggregate base

and subbase materials used in Maryland via the AASHTO correlation with elastic

(resilient) modulus. The resilient modulus of the materials was measured with

standard laboratory techniques. The wide range of materials and conditions

14

investigated in this study subsequently provided significant basis for AASHTO to

recommend SLC design ranges for unbound base and subbase materials.

 Richardson (1996) determined the SLC of cement-stabilized soil bases used in

Missouri via the AASHTO correlation with elastic (resilient) modulus. The moduli

of the materials were determined from standard static compression tests on

laboratory cylinders. The SLCs ranged from 0.09 to 0.27, depending on soil type

and cement content. The researcher indicates that these values match well with

values from 10 state departments of transportation reported in the literature.

15

CHAPTER 3
STRUCTURAL NUMBER (SN) OF PAVEMENT SECTIONS

3.1 Introduction

A formulation of the AASHTO equation for the structural number (SN) of a

flexible pavement section with two layers above the subgrade is as follows:

SN = a1D1 + a2D2 (2)

where the ai and Di represent the structural layer coefficients and the thicknesses,

respectively, of the asphalt surface and base layers in the pavement. A simple algebraic

solution for an unknown SLC, a2, for example, can be made if the layer thicknesses,

remaining SLCs, and the structural number (SN) of the pavement section are all known:

SN – a1D1
a2 = ————— (3)
D2

Two approaches have typically been applied for determination of the structural number

(SN) of the pavement section,

and each are described in the following sections.

3.2 SN from Performance Relationship

The structural number (SN) of an existing pavement section can be determined

from the original AASHTO performance equation or from a similar AASHTO-like

performance relationship if the performance of the pavement section has been

observed under known loading conditions. For example, the SN can be determined from

the original AASHTO performance equation if the subgrade resilient modulus is known,

and the change in serviceability index (from initial design to terminal) is observed for a

known application of 18,000-lb equivalent single axle loads. This process is well

described by Timm et al. 2014. A number of researchers have utilized observed

16

pavement section performance and performance relationships to determine SLCs for

both traditional and new base course material

applications.

 Peter-Davis and Timm (2009) determined the SLC of asphalt surface layers used

in Alabama via observed performance (rut depth, surface cracking, and surface

roughness) and traffic data from experimental test sections. The researchers

determined the unknown layer coefficient by adjusting its value until load

repetitions to failure computed from the original AASHTO performance equation

matched the load repetitions to failure observed in the field test sections. This

approach yielded an average layer coefficient of 0.51, versus a value of 0.44

used for design in Alabama.

 Hicks et al. (1979) and Hicks et al. (1983) backcalculated the SLC of open-

graded asphalt emulsion surface layers used on in-service U.S. Forest Service

roads in Oregon and Washington via observed performance (rut depth, surface

cracking, and surface roughness), estimates of other input parameters, and the

original AASHTO performance equation. The researchers indicate that this

method is particularly useful for the estimation of conservative, minimum values

of layer coefficients.

 Little and Epps (1980) backcalculated the SLCs of recycled asphalt concrete

pavement layers from 26 field projects in 11 states using the AASHTO

performance equation and the known thicknesses and SLCs of the other

pavement layers. Because these were all recently-constructed pavements and

performance and traffic loading information of the pavement sections was not

available for the AASHTO performance equation, the researchers developed and

17

utilized an empirical relationship between load repetitions and the computed

elastic deflection of the subgrade to estimate the anticipated performance of the

pavement sections. The empirical relationship was developed from the known

performance results of the original AASHO Road Test pavement sections, and

the subgrade deflections were computed via an elastic layer analysis of the

pavement sections. The SLCs of recycled asphalt pavement used as a surface

layer were found to typically exceed the value of 0.44 established for an AASHO

Road Test conventional asphalt surface layer. The SLCs of recycled asphalt

pavement used as a base layer were found similar to bituminous stabilized and

cement and lime stabilized bases at the AASHO Road Test.

 Wang and Larson (1977, 1979) determined the SLCs of asphaltic concrete base,

cement-stabilized limestone aggregate base, and limestone aggregate subbase

materials used in Pennsylvania via observed performance (rut depth, surface

cracking, and surface roughness) and traffic data from experimental test sections

at the Pennsylvania State Test Track. The SLCs were backcalculated from an

AASHTO-type relationship developed at the Test Track between observed

performance and load repetitions and the known thicknesses and SLCs of the

other pavement layers.

 Wu et al. (2012) determined the SLCs of base course materials constructed from

blended calcium sulfate (BCS) stabilized with slag and fly ash in Louisiana via

observed performance and traffic data from experimental test sections. The test

sections were constructed and loaded at the Accelerated Loading Facility (ALF)

at the Louisiana Transportation Research Center (LTRC), and the experiment

18

data was used to construct a performance relationship between the number of

load repetitions to failure and structural number. The unknown base SLC was

backcalculated from the performance equation and using the known SLCs and

thicknesses of the remaining pavement layers. A value of 0.34 was reported for

the BCS/slag and 0.29 for the BCS/fly ash.

3.3 SN from FWD Deflections

The structural number (SN) of an existing pavement section can be determined

from deflections measured with a falling weight deflectometer (FWD). Several methods

are available, including AASHTO (1993), Rohde (1994), Crovetti (1998), Romanoschi

and Metcalf (1999), and Kim et al. (2013). All of the methods utilize fundamental

equations of pavement mechanics and empirical relationships from pavement studies to

estimate the structural number of a pavement section from measured FWD deflections.

A number of researchers have utilized such measurements on available pavement

sections to determine SLCs for both traditional and new base course material

applications. The AASHTO (1993) procedure is most widely used and is well described

by Timm et al. (2014).

 In addition to the resilient-modulus-based results reported above, Baus and Li

(2006) determined the SLC of a graded aggregate base used in South Carolina

via the AASHTO FWD procedure. Two test sections were investigated that

incorporated three base thicknesses and with and without a cement stabilized

subgrade. The researchers were concerned to report inconsistent SLC values

ranging from 0.13 to 0.36 for the same graded aggregate investigated, and

despite the fact that South Carolina uses a constant value of 0.18 for all graded

19

aggregate bases. This range of values is also notably higher than the range

reported above based upon resilient modulus measurements.

 Gautreau et al. (2008) determined the SLC of clayey subgrade soil treated with

cement, lime, and lime-fly ash used as a subbase layer in Louisiana via the

AASHTO FWD procedure. Test sections were constructed and loaded at the

Accelerated Loading Facility (ALF) at the Louisiana Transportation Research

Center (LTRC). Based upon FWD deflections, the researchers found that layer

coefficients for the cement-stabilized soil may be assigned a value of 0.06, while

for lime-treated soil, no structural contribution should be allowed. Unfortunately,

the researchers did not determine an SLC for the materials using performance

data from the loaded test sections.

 Hossain et al. (1997) determined the SLCs of crumb-rubber-modified (CRM)

asphalt mixtures used in Kansas for both surface and base layers via the

AASHTO FWD procedure. Several test sections of recently constructed

pavements along three routes in Kansas were used for the study. The

researchers found average values for the layer coefficients typical of practice, but

also reported very high variability in the results across the multiple test sections

investigated. Further comments on the Hossain et al. (1997) results are found in

Section 4.3, below.

 In addition to the material-parameter-based results reported above, Janoo (1994)

determined the SLC of various base materials used in New Hampshire via the

Rohde (1994) FWD procedure on 10 experimental pavement test sections. The

researcher notes that the SLC for asphalt concrete base from the Rohde

20

procedure was similar to that used by the New Hampshire DOT (NHDOT), which

gave the researcher confidence in using this procedure for the other base

materials. Further, the layer coefficients from the Clegg hammer and DCP were

all close to those obtained from Rohde, which provided further confidence in the

suggested SLC values. On the other hand, the researcher found that the values

determined from backcalculated elastic moduli results were typically higher than

those from the Rohde, Clegg, and DCP methods, noting that the discrepancies

could be due to difficulty in obtaining a good fit to the measured FWD deflection

measurements during the backcalculation process.

 Marquis et al. (2003) determined the SLC of a recycled asphalt concrete base

with foamed asphalt additive in Maine via the AASHTO FWD procedure.

Sections of four pavement projects were investigated, and the layer coefficients

were found to be 0.22, 0.23, 0.22, and 0.35.

 Pologruto (2001) utilized the AASHTO FWD procedure to determine the SLCs of

all pavement layers on a pilot project using representative materials for the

construction of pavements in Vermont. Three different test locations were

specified and constructed with the same type of materials: three different types of

asphalt concrete for surface, binder, and base, a densely-graded crushed stone

base/subbase, and a sand subbase. At each of the three test site locations, three

structural configurations of the materials were implemented. The FWD testing

was conducted on the surface of each successive layer during construction as

means for determining each SLC. The average SLC values were found to be

0.60 for all asphalt layers, 0.14 for crushed stone base/subbase, and 0.07 for

21

sand subbase. The researcher notes that: (1) the value of 0.14 for crushed stone

falls within the range established by AASHTO for an unbound base material, (2)

the value of 0.07 for sand is on low side of AASHTO range for subbase, and (3)

the value of 0.60 for asphalt concrete is considerably higher than the AASHTO

value of 0.44. The researcher does note that the average value of 0.60 is partially

substantiated by other properties measured on these materials, including

Marshall stability and moduli backcalculated from FWD deflections.

 Romanoschi et al. (2003a, 2003b, 2004) determined the SLC of base layers from

full-depth reclamation of an asphalt-bound pavement constructed in Kansas and

stabilized with foamed asphalt via the AASHTO FWD procedure. Four

experimental test pavements were constructed at research facilities at Kansas

State University, and the average SLC found for the materials was 0.18.

 Wen et al. (2004) determined the SLC of of a base layer constructed from full-

depth reclamation (FDR) of an asphalt-bound pavement stabilized with fly ash

and constructed in Wisconsin via the Crovetti (1998) FWD procedure. An initial

SLC of 0.16 was determined following construction of the pavement section, and

a value of 0.23 was calculated the following year, indicating that improvement of

the material occurred with time. The improvement was attributed to pozzolanic

reaction in the mixture due to the fly ash stabilizer.

22

CHAPTER 4
EQUIVALENCY WITH REFERENCE MATERIAL

4.1 Introduction

The equivalency methods are based upon a fundamental premise of the

AASHTO pavement design methodology that two differing materials will provide the

same structural capacity (or number) in a pavement if the product of their layer

coefficient and thickness are equal:

auDu = arDr (4)

where au = structural layer coefficient of unknown material, Du = thickness of unknown

material, ar = structural layer coefficient of known reference material, and Dr = thickness

of known reference material. Using this equivalency premise, the structural layer

coefficient of a previously unknown material can be determined as follows:

1. Choose a reference material with a known SLC, ar, and a relevant pavement

cross section.

2. Determine the thickness required for the known reference material, Dr, that

provides an acceptable pavement section according to a chosen design criterion.

3. Determine the thickness required for the unknown material, Du, that provides an

acceptable pavement section according to the same chosen design criterion.

4. Solve for the unknown structural layer coefficient, au, using the above equation.

Three types of design criteria have typically been utilized to establish the equivalency,

and each are described in the following sections.

4.2 Material Property Criterion

A simple equivalency between an unknown material and a known reference

material can be based upon a relevant material property, with the elastic modulus being

23

the typical property of choice. Several researchers have utilized material property

equivalencies to determine SLCs for both traditional and new base course material

applications.

 Coree and White (1989) determined the SLCs of 10 asphaltic concrete mixtures

used in Indiana via comparison of stiffnesses measured in the laboratory with the

stiffness and layer coefficient of an asphalt mixture used in the AASHO Road

Test. Using Odemark’s equivalent stiffness principle, they developed the

following equivalency relationship:

au = ar (Er/Eu)
1/3 (5)

where au = structural layer coefficient of unknown material, Eu = modulus of

unknown material, ar = structural layer coefficient of known reference material,

and Er = modulus of known reference material. They also utilized a probabilistic

approach in which a distribution for the layer coefficient is determined based

upon estimates of the uncertainties in the measured moduli and the layer

coefficient of the known AASHO reference material.

 Rada et al. (1989) documented two procedures for estimating the structural

number (SN) of pavement sections via FWD measurements. In one method, the

FWD deflections are used to determine elastic moduli via backcalculation, and

then the SLCs of each layer are determined using the moduli and an equivalency

technique based upon Odemark as shown by Coree and White (1989) discussed

above. With the layer coefficients available, the SN is calculated directly using

layer thicknesses and the standard AASHTO equation for SN.

24

 Tang et al. (2012) determined the granular equivalencies of base layers

constructed from full-depth reclamation of asphalt-bound pavements constructed

in Minnesota. In some cases, a stabilizer such as fly ash or asphalt emulsion was

added to the mixture. Similar to a SLC, granular equivalency (GE) indicates the

contribution of a given layer of pavement material relative to the performance of

the entire pavement section. It is dependent upon the properties of that layer in

relation to the properties of the other layers. The relative thickness between the

layers is known as the granular equivalency factor. The layer equivalency can be

determined by laboratory and field tests. In this study, the GE of stabilized FDR

was determined from several field test sections via a method established in

Minnesota using FWD deflections. The equivalency with a standard granular

base material (GE=1.0) was found to be about 1.5.

4.3 Pavement Response Criterion

An equivalency between an unknown material and a known reference material

can be based upon a relevant response parameter of the chosen pavement section,

such as surface deflection, the tensile strain at the bottom of the asphalt surface layer,

or the compressive strain at the top of the subgrade. A number of researchers have

utilized equivalencies based upon pavement response model criteria to determine SLCs

for both traditional and new base course material applications. In all cases the

pavement response models will require the determination of relevant input parameters

to characterize the pavement sections and materials, including layer thicknesses and

elastic moduli.

25

 In addition to the FWD-based results reported above, Hossain et al. (1997)

determined the SLCs of crumb-rubber-modified (CRM) asphalt mixtures used in

Kansas for both surface and base layers using an equivalency based upon

pavement response modeling. Here, the unknown SLC was computed as shown

above using a design thickness for the unknown material and the SLC and

design thickness of a reference material. The design thicknesses were

determined via an elastic layered analysis of the pavement sections and an

equivalency based upon the vertical compressive strain in the subgrade. For

CRM asphalt overlays, an average value of 0.30 was reported, which they note is

slightly lower than for conventional asphalt concrete. For newly constructed CRM

asphalt pavements, an average value of 0.35 was reported, which they note is

similar to an AASHTO-recommended value for conventional asphalt concrete. In

comparison with the FWD-based results presented above, the researchers note

that the average values were similar, but the FWD-based results displayed

considerably higher variability across the various test sections.

 Mallick et al. (2002) determined the SLCs of base layers constructed in Maine

from full-depth reclamation of an asphalt-bound pavement with additives,

including emulsion, lime, and cement, and using an equivalency based upon

pavement response modeling. As with Hossain et al. (1997) above, the unknown

SLC was computed using a design thickness for the unknown material, and the

SLC

and design thickness of a reference material. The design thicknesses were

determined via an elastic layered analysis of the pavement sections, and an

equivalency based upon the surface deflection of the pavement. The SLCs were

26

found to be 0.24 for emulsion additive, 0.28 for cement additive, and 0.37 for

emulsion plus lime additive.

4.4 Pavement Performance Criterion

An equivalency between an unknown material and a known reference material

can be based upon a pavement performance criterion for the chosen pavement section,

such as fatigue cracking or rutting. Several researchers have utilized equivalencies

based upon pavement performance model criteria to determine SLCs for both traditional

and new base course material applications. In all cases the pavement performance

models will require the determination of relevant input parameters to characterize the

pavement sections and materials, including layer thicknesses, elastic moduli, and other

material properties that govern performance or damage.

 George (1984) determined the SLCs of asphalt mixtures used as both surface

and base layers, soil-cement base, and soil-lime subbase using an equivalency

based upon pavement performance. Here, the unknown SLC was computed as

shown above using a design thickness for the unknown material, and the SLC

and design thickness of a reference material. The design thicknesses were

determined via a fatigue cracking performance model presented by George

(1984). The author reports SLCs of 0.44, 0.38, 0.24, and 0.20 for asphalt surface,

asphalt base, soil-cement base, and soil-lime subbase, respectively, and

demonstrates these values to be in good accord with those of AASHTO.

 In addition to the observed performance-based results reported above, Hicks et

al. (1979) determined the SLC of open-graded asphalt emulsion surface layers

used on in-service U.S. Forest Service roads in Oregon and Washington via

27

equivalency based upon pavement performance modeling. As with George

(1984) above, the unknown SLC was computed using a design thickness for the

unknown material, and the SLC and design thickness of a reference material.

Here, the design thicknesses were determined via an elastic layered analysis of

the pavement sections, and a fatigue relationship between tensile strain in the

surface layer and number of load repetitions. The researchers note that the

computed values were in good agreement with those backcalculated from in-

service roads.

 Li et al. (2011) revised the SLC of asphalt surface layers in the state of

Washington from 0.44 to 0.50 via equivalency based upon pavement

performance modeling. Here, the pavement performance modeling was

conducted with the Mechanistic Empirical Pavement Design Guide (MEPDG)

calibrated locally using pavement performance data observed in Washington.

 Van Wijk et al. (1983) determined the SLC of cold recycled asphalt pavement

mixed with emulsion and foamed asphalt and used as a base layer for

pavements in Indiana. As with George (1984) above, the unknown SLC was

computed using a design thickness for the unknown material, and the SLC and

design thickness of a reference material. Here, the design thicknesses were

determined via an elastic layered analysis of the pavement sections, and several

response and performance criteria were evaluated, including: (1) tensile strain at

the bottom of recycled layer, (2) tensile strain at the bottom of remaining initial

pavement layer, (3) compressive subgrade strain, (4) subgrade deformation, and

(5) surface deformation. Each criteria was evaluated for the test sections

28

investigated, and the SLC was based on the criterion that produced the shortest

service life. For these recycled pavements, the controlling criterion was found to

be either the subgrade deformation or the tensile strain at the bottom of the

recycled layer. The researchers note that this approach yielded layer coefficients

with considerable variability among the pavement sections investigated, and

suggested that a single SLC cannot be determined without reliable fatigue

performance characteristics for all the pavement layers.

29

CHAPTER 5
CONCLUSIONS

FDOT’s current method of determining a base material structural layer coefficient
(SLC) is detailed in the Materials Manual, Chapter 2.1, Structural Layer Coefficients for
Flexible Pavement Base Materials. Currently, any new base material not approved
under FDOT specifications must undergo (1) laboratory testing, (2) test pit investigation,

and (3) a project test section for constructability and roadway performance evaluation to

determine a SLC for design purposes. The test section evaluation phase can take up to
five years to compare the pavement performance of the new base material with a
limerock base control section. In this project, a thorough review of literature has been
conducted of current and past practices for the determination of structural layer
coefficients (SLC) of pavement base materials. The review organizes the methodologies
into three broad categories: (1) methods that determine SLCs via relationships with
other material parameters; (2) methods that determine SLCs via estimates of the
structural number (SN) of existing and available pavement sections; and (3) methods
that establish SLCs via equivalencies with a reference material. Several of the
strategies reviewed provide opportunities for estimating SLCs of both traditional and
new base course materials in a more accelerated fashion and in considerably less time
than the five years often required at present.

30

LIST OF REFERENCES

AASHTO (1993), AASHTO Guide for Design of Pavement Structures, American
Association of State Highway and Transportation Officials, Washington, D.C.

Bahia, H.U., Bosscher, P.J., Christensen, J., and Hu, Y. (2000), Layer Coefficients for

New and Reprocessed Asphaltic Mixes, Report No. WI/SPR-04-00, Wisconsin
Department of Transportation, January, 129 pp.

Baus, R.I. and Li, T. (2006), Investigation of Graded Aggregate Base (GAB) Courses,

Report No. FHWA-SC-06-03, South Carolina Department of Transportation,
February, 95 pp.

Butalia, T., Wolfe, W., and Kirch, J. (2011), Structural Monitoring of Full-Scale Asphalt

Pavements Reclaimed Using Class F Fly Ash, World of Coal Ash (WOCA)
Conference, Denver, May 9-12.

Coree, B.J. and White, T.D. (1989), The Synthesis of Mixture Strength Parameters

Applied to the Determination of AASHTO Layer Coefficient Distributions,
Association of Asphalt Paving Technologists, Vol. 58, pp. 109-141.

Crovetti, J. (1998), Design, Construction, and Performance of Fly Ash–Stabilized CIR

Asphalt Pavements in Wisconsin. Wisconsin Electric–Wisconsin Gas, Milwaukee.

Gautreau, G., Zhang, Z., and Wu, Z. (2008), Accelerated Loading Evaluation of

Subbase Layers in Pavement Performance, Report No. FHWA/LA.09/468,
Louisiana Department of Transportation and Development, 160 pp.

George, K.P. (1984), Structural Layer Coefficient for Flexible Pavement, Journal of

Transportation Engineering, ASCE, Vol. 110, No. 3, pp. 251-267.

Hicks, R.G., Hatch, D.R., Williamson, R., and Steward, J. (1979), Open-Graded

Emulsion Mixes for Use as Road Surfaces, Transportation Research Record
702, Transportation Research Board, Washington, D.C., pp. 64-72.

Hicks, R.G., Santucci, L.E., Fink, D.G., and Williamson, R. (1983), Performance

Evaluation of Open-Graded Emulsified Asphalt Pavement, Proceedings of
Association of Asphalt Paving Technologists, Vol. 52, pp. 441-473.

Hossain, M., Habib, A., and LaTorella, T.M. (1997), Structural Layer Coefficients of

Crumb-Rubber Modified Asphalt Concrete Mixtures, Transportation Research
Record 1583, Transportation Research Board, Washington, D.C., pp. 62-70.

Janoo, V.C. (1994), Layer Coefficients for NHDOT Pavement Materials, Special Report

94-30, New Hampshire Department of Transportation, September.

31

Kim, M.Y., Kim, D.Y., and Murphy, M.R. (2013), Improved Method for Evaluating the
Pavement Structural Number with Falling Weight Deflectometer Deflections,
Transportation Research Record: Journal of the Transportation Research Board,
No. 2366, pp. 120-126.

Li, J., Uhlmeyer, J.S., Mahoney, J.P., and Muench, S.T. (2011), Use of the 1993

AASHTO Guide, MEPDG and Historical Performance to Update the WSDOT
Pavement Design Catalog, WA‐RD 779.1, Washington State Department of
Transportation.

Little, D. N. and Epps, J.A. (1980), Evaluation of Certain Structural Characteristics of

Recycled Pavement Materials, Proceedings of the Association of Asphalt Paving
Technologists, Vol. 49, pp. 219-251.

Mallick, R.B., Bonner, D.S., Bradbury, R.L., Andrews, J.O., Kandhal, P. S., and

Kearney, E.J. (2002), Evaluation of Performance of Full-Depth Reclamation
Mixes, Transportation Research Record: Journal of the Transportation Research
Board, No. 1809, TRB, Washington, D.C., pp. 199–208.

Marquis, B., Peabody, D., Mallick, R., and Soucie, T. (2003), Determination of Structural

Layer Coefficient for Roadway Recycling Using Foamed Asphalt, Final Report,
Maine Department of Transportation, 31 pp.

Peter-Davis, K.P. and Timm, D.H. (2009), Recalibration of the Asphalt Layer Coefficient,

Final Report 09-03, National Center for Asphalt Technology, August, 75 pp.

Pologruto, M. (2001), Procedure for Use of Falling Weight Deflectometer to Determine

AASHTO Layer Coefficients, Transportation Research Record 1764,
Transportation Research Board, Washington, D.C., pp. 11-19.

Rada, G. and Witczak, M.W. (1983), Material Layer Coefficients of Unbound Granular

Materials from Resilient Modulus, Transportation Research Record 852,
Transportation Research Board, Washington, D.C., pp. 15-21.

Rada, G., Witczak, M.W., and Rabinow, S.D. (1989), Comparison of AASHTO

Structural Evaluation Techniques Using Nondestructive Deflection Testing,
Transportation Research Record 1207, Transportation Research Board,
Washington, D.C., pp. 134-144.

Richardson, D. N. (1996), AASHTO Layer Coefficients for Cement-Stabilized Soil

Bases, Journal of Materials in Civil Engineering, ASCE, Vol. 8, No. 2, May, pp.
83-87

Rohde, G.T. (1994), Determining Pavement Structural Number from FWD Testing,

Transportation Research Record 1448, Transportation Research Board,
Washington D.C., pp. 61-68.

32

Romanoschi, S.A., Hossain, M., Heitzman, M., and Gisi, A., (2003a), Foamed Asphalt
Stabilized Reclaimed Asphalt Pavement: A Promising Technology for Mid-
Western Roads, Proceedings of the 2003 Mid-Continent Transportation
Research Symposium, Ames, Iowa, August, pp. 6-11.

Romanoschi, S.A., Hossain, M., Gisi, A., and Heitzman, M. (2004), Accelerated

Pavement Testing Evaluation of the Structural Contribution of Full-Depth
Reclamation Material Stabilized with Foamed Asphalt, Transportation Research
Record: Journal of the Transportation Research Board, No. 1896, pp. 199-207.

Romanoschi S.A., Hossain, M., Lewis, P., and Dumitru, O. (2003b), Performance of

Foamed Asphalt Stabilized Base in Full-Depth Reclaimed Asphalt Pavement,
Final Report, Kansas Department of Transportation, July.

Romanoschi, S.A. and Metcalf, J.B. (1999), Simple Approach to Estimation of

Pavement Structural Capacity, Transportation Research Record 1652,
Transportation Research Board, Washington, D.C., pp. 198-205.

Tang, S., Cao, Y., and Labuz, J.F. (2012), Structural Evaluation of Asphalt Pavements

with Full-Depth Reclaimed Base, Report No. MN/RC 2012-36, Minnesota
Department of Transportation, December, 53 pp.

Timm, D.H., Robbins, M.M., Tran, N., and Rodezno, C. (2014), Recalibration

Procedures for the Structural Asphalt Layer Coefficient in the 1993 AASHTO
Pavement Design Guide, NCAT Report 14-08, National Center for Asphalt
Technology, Auburn University, November, 35 pp.

Van Wijk, A., Yoder, E.J., and Wood, L.E. (1983), Determination of Structural

Equivalency Factors of Recycled Layers by Using Field Data, Transportation
Research Record No. 898, Transportation Research Board, Washington, D.C.,
pp. 122-132.

Wang, M.C. and Larson, T.D. (1977), Performance Evaluation for Bituminous-Concrete

Pavements at the Pennsylvania State Test Track, Transportation Research
Record No. 632, Transportation Research Board, Washington, D.C., pp. 21-27.

Wang, M.C. and Larson, T.D. (1979), Evaluation of Structural Coefficients of Stabilized

Base-Course Materials, Transportation Research Record No. 725,
Transportation Research Board, Washington, D.C., pp. 58-67.

Wen, H., Tharaniyil, M.P., Ramme, B., and Krebs, S. (2004), Field Performance

Evaluation of Class C Fly Ash in Full-Depth Reclamation, Transportation
Research Record: Journal of the Transportation Research Board, No. 1869, pp.
41-46.

33

Wu, Z., Zhang, Z., and King, W.M. (2012), Accelerated Loading Evaluation of Stabilized
BCS Layers in Pavement Performance, Report No. FHWA/LA.08/474, Louisiana
Transportation Research Center, March, 101 pp.

 

NCAT Report 14‐0

8

 

RECALIBRATION PROCEDURES FOR THE 

STRUCTURAL ASPHALT LAYER COEFFICIENT IN 

THE 1993 AASHTO PAVEMENT DESIGN GUIDE 

By

Dr. David H. Timm, P.E

.

Dr. Mary M. Robbins

Dr. Nam Tran, P.E.
Dr. Carolina Rodezno

 

November 2014

Timm, Robbins,       
Tran & Rodezno

i

 
 

RECALIBRATION PROCEDURES FOR THE STRUCTURAL ASPHALT LAYER COEFFICIENT  

IN THE 1993 AASHTO PAVEMENT DESIGN GUIDE 

 

NCAT Report 14‐08 

 
 
 

 
 
 

Dr. David H. Timm, P.E. 
Brasfield and Gorrie Professor of Civil Engineering 

Principal Investigator 
 

Dr. Mary M. Robbins 
Assistant Research Professor 

National Center for Asphalt Technology 
 

Dr. Nam Tran, P.E. 
Associate Research Professor 

National Center for Asphalt Technology 
 

Dr. Carolina Rodezno 
Assistant Research Professor 

National Center for Asphalt Technology 
 
 
 

 
 
 
 
 
 
 
 

November 2014 

Timm, Robbins,       
Tran & Rodezno

ii 
 

 

ACKNOWLEDGEMENTS  
The authors wish to thank the National Asphalt Pavement Association for sponsoring this 
research as part of the Optimizing Flexible Pavement Design and Material Selection research 
project and for providing technical review of this document.  
 

DISCLAIMER 
The contents of this report reflect the views of the authors who are responsible for the facts 
and accuracy of the data presented herein. The contents do not necessarily reflect the official 
views or policies of the National Center for Asphalt Technology or Auburn University. This 
report does not constitute a standard, specification, or regulation. Comments contained in this 
paper related to specific testing equipment and materials should not be considered an 
endorsement of any commercial product or service; no such endorsement is intended or 
implied. 

Timm, Robbins,       
Tran & Rodezno

iii 
 

TABLE OF CONTENTS 

         
1. Introduction ……………………………………………………………………………………………………………… 1 
2. Overview of the AASHTO Empirical Design Procedure ……………………………………………………. 2 
2.1. AASHTO Empirical Design Inputs ……………………………………………………………………………… 3 
2.2. AASHTO Empirical Design Procedure ……………………………………………………………………….. 6 
2.3. AASHTO Empirical Design Limitations ………………………………………………………………………. 8 
2.4. Structural Coefficients ……………………………………………………………………………………………. 9 

3. Recalibration Procedures ………………………………………………………………………………………….. 12 
3.1. Deflection‐Based Procedures ………………………………………………………………………………… 12 

3.1.1. Identify and Characterize Pavement Sections to be Evaluated ………………………. 13 
3.1.2. Perform Deflection Testing on Pavement Sections ………………………………………. 13 
3.1.3. Backcalculate Pavement Layer Properties …………………………………………………… 1

3.1.4. Compute New Structural Coefficients ………………………………………………………… 17 

3.2. Performance‐Based Procedure ………………………………………………………………………………. 21 
3.2.1. Performance (IRI) Data …………………………………………………………………………….. 23 
3.2.2. Traffic Data and Actual ESALs ……………………………………………………………………. 24 
3.2.3. Predicted ESALs ……………………………………………………………………………………….. 25 
3.2.4. Determination of â1 …………………………………………………………………………………. 26 

3.3. Mechanistic‐Empirical Procedures …………………………………………………………………………. 29 
3.3.1. MEPDG Local Calibration ………………………………………………………………………….. 29 
3.3.2. Use MEPDG to Generate Pavement Thicknesses …………………………………………. 3

3.3.3. Recalibrate a1 to Match MEPDG Thicknesses ………………………………………………. 31 

4. Conclusions and Recommendations …………………………………………………………………………… 31 
5. References ……………………………………………………………………………………………………………… 35 
   

Timm, Robbins,       
Tran & Rodezno

iv 
 

LIST OF TABLES 

         
Table 2.1  HMA Layer Coefficients from AASHO Road Test (data from 1) …………………………….. 10 
Table 2.2  Correlation between HMA Thickness and Input Parameters (8) …………………………… 11 
Table 3.1  Asphalt Concrete Structural Coefficient Equations …………………………………………….. 20 
Table 3.2  Example ESAL Differences Assuming a1 = 0.44 (8) ………………………………………………. 26 
Table 3.3  WSDOT MEPDG Calibration Results (data from 11) ……………………………………………. 30 
Table 3.4  WSDOT Design Comparisons (data from 11) ……………………………………………………… 31 
Table 4.1  Summary of Methods ……………………………………………………………………………………… 3


 

 

LIST OF FIGURES 

         
Figure 1.1  MEPDG and Design Software Implementation (data from 5) ……………………………….. 2 
Figure 2.1  ESALs versus Axle Weight (3) ……………………………………………………………………………. 4 
Figure 2.2  AASHO Road Test Present Serviceability Rating Form (1) …………………………………….. 5 
Figure 2.3  Pavement Performance History Quantified by PSI (3)………………………………………….. 5 
Figure 2.4  Structural Number Concept (3) …………………………………………………………………………. 6 
Figure 2.5  AASHTO Flexible Pavement Design Nomograph (2) …………………………………………….. 7 
Figure 2.6  Pavement Design with Empirical AASHTO Design Equation (3) …………………………….. 8 
Figure 2.7  Flexible Pavement Design Curves (1) …………………………………………………………………. 9 
Figure 2.8  Determining a1 based on HMA Modulus (data from 2) ………………………………………. 10 
Figure 2.9  Asphalt Structural Coefficients (data from 10) ………………………………………………….. 12 
Figure 3.1  Deflection versus Load Example (14) ……………………………………………………………….. 14 
Figure 3.2  Deflection vs. Temperature Example (14) ………………………………………………………… 

15 

Figure 3.3  

SNeff 

Schematic ……………………………………………………………………………………………… 18 
Figure 3.4  Paired Test Sections (14) ………………………………………………………………………………… 18 
Figure 3.5  Computed SNeff and Computed OGFC Structural Coefficient (14) ……………………….. 20 
Figure 3.6  Performance‐Based Recalibration Procedure (8) ………………………………………………. 22 
Figure 3.7  PSI Data Obtained from IRI Data (8) ………………………………………………………………… 23 
Figure 3.8  Actual vs. Predicted ESALs Before and After Calibration …………………………………….. 28 
Figure 3.9  NCAT Test Track Asphalt Layer Coefficients (8) …………………………………………………. 29

Timm, Robbins,       
Tran & Rodezno


 

1. INTRODUCTION 
Pavement thickness design in the U.S. has been predominantly empirically‐based since the 
1960’s.  The American Association of State Highway and Transportation Officials (AASHTO) 
pavement design guides published from 1962 through 1993 (1,2) were based primarily on 
the AASHO Road Test (1) conducted in Ottawa, Illinois from 1958 until 1960.  A more recent 
edition  of  the  AASHTO  Guide  was  published  in  1998  but  focused  primarily  on  improving 
rigid  pavement  design and  is  outside  the  scope  of  this  document.    Though  updated  and 
improved  over  time,  the  design  guides  still  rely  heavily  upon  observed  pavement 
performance  during  the  road  test.    The  performance  resulted  from  the  cross‐sections, 
climate, materials, construction practices and traffic applications representing  late 1950’s 
conditions  and  technology  at  this  one  test  location.    For  example,  the  thickest  asphalt 
section  placed  at  the  AASHO  Road  Test  was  6  inches.    Furthermore,  the  advances  in 
pavement engineering, design, materials and construction fields over the past 52 years has 
made  the  AASHTO  Design  Guide  (2)  more  outdated  with  every  passing  year,  forcing 
designers  to  extrapolate  well  beyond  the  original  conditions  of  the  road  test.    These 
advances  include  the  development  of  the  Superpave  asphalt  mix  design  procedures,  the 
development  of  the  performance  graded  (PG)  asphalt  binder  specification,  the  use  of 
polymers  and  other  modifiers  in  asphalt,  improved  asphalt  plant  production  controls, 
improved construction techniques and quality control procedures, to name just a few. 
 
As  documented  previously  (3),  the  National  Cooperative  Highway  Research  Program 
(NCHRP) recognized the need for an improved and updated pavement design system and 
began Project 1‐37A  in 1998 entitled, “Development of the 2002 Guide for the Design of 
New and Rehabilitated Pavement Structures: Phase I.”  The project ran through 2004 and 
resulted  in  the  Mechanistic  Empirical  Pavement  Design  Guide  (MEPDG).    In  2008,  the 
MEPDG  was  transitioned  to  the  AASHTOWare  series  of  programs  and  was  renamed 
DARWin‐ME as the program developers continued to  improve the program’s capabilities.    
In  2013,  the  software  became  commercially  available  under  the  name  AASHTOWar

e

T

M

 

Pavement ME Design.   The software and accompanying documentation (4), represents a 
tremendous leap forward from the 1993 Design Guide (2) and software, DARW

in. 

 
Though the MEPDG is recognized as a technological advance in pavement design, there are 
costs  associated  with  implementing  the  new  procedure.    The  costs  include  software 
licensing  and  training,  development  of  numerous  data  sets  through  laboratory  and  field 
testing  required  to  run  the  software  and  validation/calibration  studies  that  must  be 
conducted  before  fully  implementing  the  new  procedure.    These  activities  can  also  take 
significant amounts of time to accomplish.   Currently, the older empirically‐based design 
procedure is the most popular approach in the U.S. with 78% of states using some edition 
(i.e., 1972, 1986 or 1993  Design Guide) of the older empirical AASHTO procedure (3,5).  A 
recent survey of state agencies, as summarized  in Figure 1.1,  indicated that many states 
plan to adopt the MEPDG, but only three have currently done so and fourteen expect to 
implement  within  the  next  two  years  (5).    The  other  states  are  at  least  two  years  from 
implementing the MEPDG while six do not currently plan to implement (5).  For states that 
have already begun working toward  implementing the MEPDG, there are many data sets 

Timm, Robbins,       
Tran & Rodezno


 

(i.e.,  traffic,  material  properties,  performance  records)  that  are  common  between  the 
empirical and mechanistic‐empirical approaches, so it would make sense to update the old 
method  while  implementing  the  new  approach.    Finally,  given  the  complexities  of  the 
MEPDG and design software, there may be many design scenarios (e.g., facilities such as 
city streets, county roads,  lower volume state routes) that simply do not warrant such a 
detailed analysis. 

Figure 1.1  MEPDG and Design Software Implementation (data from 5). 

Clearly, there is a gap between the outdated empirically‐based procedure and the MEPDG 
that should be filled to achieve optimal pavement structural designs.  The purpose of this 
document  is  to  provide  recommended  procedures  for  updating  the  empirically‐based 
design  method  to  reflect  modern  pavement  performance.    As  explained  below,  focus  is 
placed on recalibrating the asphalt structural coefficient as it has the strongest correlation 
amongst all the design variables to pavement thickness.  Further rationale for recalibrating 
the asphalt coefficient is that it was AASHTO’s original intent that states develop agency‐
specific  structural  coefficients.    As  stated  by  George  (6),  “Because  of  wide  variations  in 
environment,  traffic  and  construction  practices,  it  is  suggested  that  each  design  agency 
establish layer coefficients based on its own experience and applicable to its own practice.” 

2. OVERVIEW OF THE AASHTO EMPIRICAL DESIGN PROCEDURE 
Before  discussing  methods  for  updating  the  AASHTO  empirical  design  procedure,  it  is 
important  to  establish  a  firm  understanding  of  the  design  process  and  how  it  was 
developed.   Subsections 2.1 through 2.3 explain the process and  its  limitations and were 
excerpted from a previous report (3), while section 2.4 further explains the importance of 
the structural coefficient. 
 

Timm, Robbins,       
Tran & Rodezno

 

2.1 AASHTO Empirical Design Inputs 
Observations  from  the  AASHO  Road  Test  established  correlations  between  the  following 
four main factors for flexible pavements: 

 Soil condition as quantified by the subgrade resilient modulus (Mr) 
 Traffic as quantified by equivalent single axle loads (ESALs) 
 Change in pavement condition as quantified by the change in pavement serviceability 

index (PSI) 
 Pavement structure as quantified by a structural number (SN) 
 
The soil resilient modulus describes the inherent ability of the soil to carry load and can be 
measured in the laboratory through triaxial resilient modulus testing or in the field through 
falling weight deflectometer (FWD) testing.   Generally,  lower Mr values will require more 
pavement thickness to carry the given traffic.  The soil modulus during the AASHO road test 
was approximately 3,000 psi, and care should be taken when using the AASHTO empirical 
method to be sure Mr values obtained through modern means are adjusted to reflect test 
conditions  (1,2).    For  example,  AASHTO  recommends  dividing  the  soil  modulus  obtained 
through FWD testing by three before using in the empirical design equation (2).  It is also 
important to emphasize that there was only one soil type used during the AASHO Road Test 
(1).    Though  there  were  seasonal  fluctuations  in  the  soil  modulus  from  which  empirical 
correlations  between  soil  modulus  and  pavement  condition  were  developed,  they  are 
strictly limited to that soil type. 
 
The AASHO Road Test featured various test loops that were constructed of asphalt concrete 
thicknesses  ranging  from  1  to  6  inches  and  trafficked  with  different  axle  types  and  load 
levels (1).  The researchers noted an approximate fourth‐power relationship between the 
amount  of  pavement  damage  and  the  load  level  applied  to  the  pavement  section.    This 
relationship  was  the  central  idea  in  the  equivalent  single  axle  load  (ESAL),  which  was 
selected  to  be  an  18,000‐lb  single  axle  with  dual  tires.    AASHTO  developed  empirical 
equations to relate the number of applications of all other axle types (single, tandem and 
tridem) and load magnitudes to that of the ESAL.  Figure 2.1 illustrates ESAL values for single 
and tandem axles over a range of axle weights.  The single and tandem curves clearly show 
the fourth‐order nature of ESALs versus axle weight.  The benefit of spreading the load over 
more axles is evident in Figure 2.1 by the dramatic reduction in ESALs for the tandem axle 
group at any given axle weight, relative to the single axles.   Finally, the ESAL standard  is 
shown in the plot at 18 kip with an ESAL value of one.  Within the AASHTO empirical design 
system,  total  traffic  must  be  decomposed  into  vehicle  types  with  known  axle  weight 
distributions.    The  axle  weight  distributions  are  then  used  with  the  ESAL  equations  to 
determine  ESALs  per  vehicle  from  which  a  total  design  ESAL  over  the  pavement  life  is 
computed.  It should also be noted that the ESAL assumes a tire inflation pressure of 70 psi 
and a tire with a bias‐ply design.  Today, tire pressures in excess of 100 psi are common with 
a radial design.  These factors are not accounted for in the ESAL equations.

Timm, Robbins,       
Tran & Rodezno


 

Figure 2.1  ESALs versus Axle Weight (3). 

During the AASHO Road Test, routine inspections of each section were made by a panel of 
raters.   Figure 2.2 shows the rating form and the zero to five scale used by the raters to 
quantify  current  pavement  condition.    Though  actual  pavement  distress  measurements 
were made during the road test, this rating scale was the only performance parameter used 
in  the  thickness  design  procedure.    The  researchers  compiled  the  average  ratings  and 
plotted them against the amount of applied traffic in each section to develop performance 
history curves as shown schematically in Figure 2.3.  The AASHTO design procedure relies 

upon characterizing the change in serviceability (PSI) from the start (po) to the end (pt) of 
the design life as a function of applied ESALs.  Typical PSI design values range from 2 to 3 
as a function of roadway classification (2).  For example, a high volume interstate would be 

designed with a smaller PSI compared to a low volume county road. 

Timm, Robbins,       
Tran & Rodezno


 

Figure 2.2  AASHO Road Test Present Serviceability Rating Form (1). 

 
 
 

Figure 2.3  Pavement Performance History Quantified by PSI (3).

Since flexible pavements are typically comprised of diverse layers with varying engineering 
properties, it was necessary for AASHTO to introduce the pavement structural number (SN) 
concept.  SN represents the cumulative pavement structure above subgrade expressed as a 
product of individual layer thicknesses (Di), their respective structural coefficients (ai) and 
drainage coefficients (mi) as illustrated in Figure 2.4.  The layer thicknesses are output from 
the  AASHTO  design  process  as  will  be  described  below.    The  structural  coefficients  are 
empirical values meant to relate the relative load‐carrying capacity of different materials.  
For  example,  many  state  agencies  use  0.44  for  asphalt  and  0.14  for  granular  base  as 
originally recommended by AASHO (1).  These particular structural coefficients mean that 
one inch of asphalt is roughly equivalent to 3.1 inches (0.44÷0.14) of aggregate base.  The 
drainage coefficients are meant to empirically adjust the design according to site‐specific 

po 

pt 

Present Serviceability Index 


Traffic, ESALs 

PSI = p0‐pt 

Timm, Robbins,       
Tran & Rodezno


 

rainfall expectations and quality of drainage provided by the material itself (1).   Drainage 
coefficients range from 0.4 to 1.4 with the original AASHO Road Test condition represented 
as 1.0. 

Figure 2.4  Structural Number Concept (3). 
 
 

2.2 AASHTO Empirical Design Procedure 
As  described  above,  the  AASHO  Road  Test  (1)  established  a  correlation  between  soil 
condition, traffic, change in pavement condition and pavement structure.  This relationship 

is shown  in Equation 1 (2).   The Mr, PSI and SN terms are as defined above.   ESALs are 
represented by the W18 term.  The ZR and S0 terms are reliability and variability factors not 
originally  part  of  the  AASHTO  design  procedure  but  added  later  to  incorporate  a  safety 
factor  into the design.   They are not present  in the 1972 edition of the Design Guide (7) 
which  some  states  still  use  (3).    The  other  quantities  in  the  equation  are  regression 

coefficients that provided the best match between the independent variables (SN, PSI, Mr) 
and the performance of the pavement section as quantified by ESALs. 
 

 

 

07.8log32.

2

1

109

4

4.

0

5.12.4
log

20.01log36.9log

19.

5

018 




 RR M

SN

PS

I

SNSZW   (Equation 1) 

While  the  purpose  of  Equation  1  is  to  determine  the  required  structural  number  of  a 
proposed pavement section, it is written to compute ESALs (W18) and solving algebraically 
for SN is a daunting task.  To alleviate this problem, AASHTO published a design nomograph 
(Figure 2.5) that solves for SN given the other inputs.  Notice that W18 (ESALs) is treated as 
another input with the nomograph solving toward SN.  Alternatively, the DARWin software 
developed  for  AASHTO,  or  solver  subroutines  in  spreadsheets,  are  used  to  solve  the 
equation for SN.  It is important to note that Equation 1 uses ZR to represent reliability while 
in the nomograph, reliability is used directly as a percentage.  More precisely, ZR represents 
the z‐statistic corresponding to the chosen level of reliability.  When using the equation, ZR 
must be entered.  When using the nomograph, the reliability percentage must be entered.  
AASHTO  has  recommended  levels  of  reliability  (2),  based  upon  highway  functional 
classification, and the value should be carefully selected as pavement thickness is correlated 

Asphalt Concrete (a1) 

Granular Base (a2, m2) 

Granular Subbase (a3, m3) 

Subgrade (Mr) 

 

                 D1 

         D2 

D3 

 

a1*D1 

+a2*m2*D2 

+a3*m3*D3 

SN =  

Timm, Robbins,       
Tran & Rodezno


 

to the reliability level and choosing values outside of the recommended ranges can greatly 
increase pavement thickness. 
 

 
Figure 2.5  AASHTO Flexible Pavement Design Nomograph (2). 

 
The AASHTO design equation (Equation 1 or Figure 2.5) is meant to be used for each layer in 
a  multilayer  pavement  structure  to  determine  the  required  pavement  thicknesses.    As 
described by AASHTO (2), this is done in a top‐down fashion as depicted in Figure 2.6.  The 
design begins by finding the required structural number above the granular base (SN1) using 
the  granular  base  modulus  and  other  input  parameters  in  the  design  equation  or 
nomograph.  By definition, this structural number is the product of the structural coefficient 
and thickness of  layer one, so  it can be used to solve for the thickness of the first  layer.  
Next, the required structural number above the granular subbase (SN2) is found by using the 
subbase modulus and other  input parameters  in the design equation or nomograph.   As 
shown in Figure 2.6, SN2 is the sum of the layer one contribution (a1*D1) and the layer two 
contribution (a2*m2*D2).  Since D1 was already found in the previous step, the SN2 equation 
can be solved for D2.    This procedure is followed again for the subgrade (or next sublayer, if 
present), as shown in Figure 2.6, to arrive at a unique set of pavement layer thicknesses.

Timm, Robbins,       
Tran & Rodezno


 

SN1 = a1*D1

D1

SN

SN2 = a1*D1+a2*m2*D2

D2
SN a ∗

D

a ∗ m

SN3 = a1*D1+a2*m2*D2+a3*m3*D3

D

3

SN a ∗ D a ∗ m ∗ D

a ∗ m

Figure 2.6  Pavement Design with Empirical AASHTO Design Equation (3). 

 
2.3 AASHTO Empirical Design Limitations 

Though the empirical AASHTO design procedure has been used since the 1960’s, there are 
many  factors  that  limit  its  continued  use  and  provide  motivation  for  developing  and 
implementing more modern methods.  Most notably among these factors is the very nature 
of the method itself: empirical.  This means that the design equations described above are 
strictly limited to the conditions of the original road test.  This includes all the coefficients in 
Equation 1, the structural coefficients (ai), drainage coefficients (mi), ESAL equations and so 
forth.  Any deviation from these conditions results in an unknown extrapolation. 
 
The limitations of the AASHO Road Test are numerous.  The experiment had one soil type, 
one  climate,  one  type  of  asphalt  mix  (pre‐Marshall  mix design),  limited  pavement  cross‐
sections, limited load applications and tires inflated to 70 psi (1).  Any deviation from these 
factors  in  modern  design  means  extrapolation,  which  can  lead  to  under  or  over‐design.  
Most  designs  conducted  today  are  extrapolations  beyond  the  original  experimental 
conditions.  Consider, for example, the thickness design curves published in 1962 as part of 
the AASHO Road Test report shown in Figure 2.7.  The shaded gray area above 1.1 million 
axle  loads  is  entirely  extrapolated.    Also,  the  dashed  portions  of  the  curves  are 

Asphalt Concrete (a1) 
Granular Base (a2, m2) 
Granular Subbase (a3, m3) 
Subgrade (Mr) 
 
                 D1 
         D2 
D3 

SN3   SN2     SN1

Modulus of granular base,

and other inputs

(W18, ZR, S0, PSI)
used to find SN1

Modulus of granular subbase,

and other inputs 

(W18, ZR, S0, PSI) 
used to find SN2  

Modulus of subgrade, 

and other inputs 

(W18, ZR, S0, PSI) 
used to find SN3  

Timm, Robbins,       
Tran & Rodezno


 

extrapolations.  As evidenced by Figure 2.7, there was very little, even in 1962, that was not 
an extrapolation. 
 

 
Figure 2.7  Flexible Pavement Design Curves (1). 

   
2.4 Structural Coefficients 

The  structural  coefficients  are  of  great  importance  in  the  AASHTO  procedure.    These 
empirical terms are meant to reflect the relative structural contributions of each pavement 
layer and have a direct impact on the derived layer thicknesses as demonstrated in Figure 
2.6.   Though AASHO recommended 0.44 for the asphalt  layer  in 1962, a range of values 
were actually reported.  Table 2.1 lists the reported values by test loop ranging from 0.33 to 
0.83.   Loop 1  is not  included  in the table because  it was never trafficked;  it was used to 
evaluate environmental impacts on pavements.  The authors of the 1962 report (1) stated 
that  a  weighted  average  was  used  to  determine  0.44  as  the  recommended  value,  but 
inspection of the data does not clearly indicate how the values were weighted to achieve 
0.44. 
 
As described by Peters‐Davis and Timm (8), a relationship was created in 1972 that linked 
the layer coefficient to the elastic modulus (E) of the HMA at 70°F, and is shown in Figure 
2.8.  Strictly speaking, this graph can only be used if the modulus is between 110,000 and 
450,000 psi.  The AASHO Road Test recommended layer coefficient of 0.44 corresponds to a 
modulus  of  450,000  psi  (2).    In  2006,  Priest  and  Timm  (9)  found  a  relationship  relating 
temperature and stiffness for all the structural sections  in the 2003 research cycle of the 

Timm, Robbins,       
Tran & Rodezno

10 
 

National  Center  for  Asphalt  Technology’s  Pavement  (NCAT)  Test  Track.    Using  their 
relationship, the average HMA modulus was calculated as 811,115 psi.  If the curve in Figure 
2.3  was  extrapolated  out  to  this  modulus  value,  the  resulting  layer  coefficient  would  be 
equal to 0.54. 

 
Table 2.1  HMA Layer Coefficients from AASHO Road Test (data from 1) 

Loop  Layer Coefficient (a1) Test Sections

R

2
 

2  0.83  44  0.80 

3  0.44  60  0.83 

4  0.44  60  0.90 

5  0.47  60  0.92 

6  0.33  60  0.81 
 

 
Figure 2.8  Determining a1 based on HMA Modulus (data from 2). 

 
The structural coefficients not only appear in the structural design equations (Equation 1, 
Figures  2.5  and  2.6)  but  they  are  also  present  in  the  ESAL  computations.    The  4

th
  order 

relationship  between  axle  weight  and  pavement  damage  was  mentioned  in  Section  2.1.  
More  specifically,  at  the  AASHO  Road  Test,  replicate  cross  sections  were  constructed  in 
different  test  loops  to  apply  repeated  axle  loads  at  various  load  levels  on  the  same 
pavement structure.  This allowed the researchers to measure the damage caused by axles 
at various weights and create mathematical relationships based upon that damage, which 
included  a  factor  accounting  for  the  pavement  structure.    This  factor  was  the  structural 
number, as is used in the design equations shown above (Equation 1, Figures 2.5 and 2.6), 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

HMA Elastic Modulus at 70
o
F (

10

5
psi)

S
tr

u
c

tu
r

a

l
C

o
e

ff

ic

ie
n

t
(a

1
)

Timm, Robbins,       
Tran & Rodezno

11 
 

and is a product of the layer thicknesses, drainage coefficients and structural coefficients.  
Since ESALs are needed in the structural design equation to determine the required SN from 
which  thicknesses  are  computed,  and  an  SN  is  required  to  determine  ESALs,  the  design 
process  follows  circular  reasoning.    To  overcome  this  problem,  many  designers  simply 
assume an SN equal to 5 to compute ESALs as the starting point, from which the actual 
design SN may be determined from the structural design equation. 
 
When considering updating the empirically‐based procedure, one may consider adjusting 
values other than the asphalt  layer coefficient.   A previous  investigation (8) conducted a 
sensitivity  analysis  to  determine  which  parameters  had  the  greatest  impact  on  asphalt 
concrete  (AC)  thickness.    The  analysis  considered  a  wide  range  of  layer  coefficients  (a1), 

traffic  levels  (ESALs),  soil  moduli  (Mr),  reliability  (R),  change  in  serviceability (PSI)  and 
design  variability (S0).   Table  2.2  summarizes the  Pearson  correlation  coefficients  for  the 
5,120 design thicknesses determined in the sensitivity analysis with the parameters ranked 
from  most  to  least  influential  (8).    Clearly,  the  asphalt  layer  coefficient  is  the  most 
influential.  The next two parameters, though also strongly correlated, may be considered 
simply part of the design scenario or site‐specific conditions.  The remaining parameters are 
much less correlated and do not affect pavement thickness as significantly as the first three.  
Therefore, it makes sense to focus recalibration efforts on the asphalt layer coefficient to 
better align observed performance with performance predicted by the design procedure.  
 

Table 2.2  Correlation between HMA Thickness and Input Parameters (8) 

Parameter  Correlation Coefficient 

Layer coefficient (a1)  ‐0.518 

Traffic level (ESALs)  0.483 

Resilient modulus (MR)  ‐0.425 

Reliability (R)  0.157 

Change in serviceability (ΔPSI) ‐0.141 

Variability (So)  0.083 

The asphalt structural coefficient plays a vital role  in pavement design and should reflect 
performance  characteristics  of  modern  materials.    However,  a  recent  survey  of  state 
agencies  (10),  summarized  in  Figure  2.9,  shows  the  distribution  of  asphalt  structural 
coefficients across the U.S., where 45% of states currently use 0.44 for at least one paving 
layer,  though  some  states  specify  according  to  the  lift  or  mix  design  using  a  number  of 
design  gyrations  (Ndes).    Many  states  (28%)  use  less  than  the  originally  recommended 
AASHO value of 0.44 (3).   Two states, Alabama (8) and Washington (11), recently revised 
their structural coefficients to 0.54 and 0.50, respectively.  These increases reflect modern 
advances  in  the  materials  and  construction  practices  and  are  more  consistent  with  field 
performance of flexible pavements in these states.  The changes result in optimum asphalt 
pavement  thickness  design  that  can  potentially  provide  significant  savings  to  the  state 
agencies.   A change from 0.33 to 0.44 would result in 25% thinner sections.   An increase 
from 0.44 to 0.54, as done in Alabama, reduces the pavement thickness by 18.5%.  As stated 

Timm, Robbins,       
Tran & Rodezno

12 
 

by Larry Lockett (12), the ALDOT State Materials and Tests Engineer at the time the change 
was implemented, “This means that our resurfacing budget will go 18% farther than it has in 
the past.  We will be able to pave more roads, more lanes, more miles, because of this 18% 
savings.”    Any  change  considered  by  a  state  agency  should  be  carefully  evaluated  and 
supported by actual pavement performance data. 
 

 
Figure 2.9  Asphalt Structural Coefficients (data from 10). 

3. RECALIBRATION PROCEDURES 

The outcome of any pavement design procedure  is a set of  layer thicknesses that will be 
sufficient to carry the expected traffic, in the given environment, with a specified level of 
performance over a fixed period of time.  The success of the design procedure hinges on the 
ability of the procedure to make accurate predictions of pavement performance given a set 
of  input  parameters.    Safety  factors  may  be  added  to  the  predictions  to  account  for 
uncertainty in the process as is done in the AASHTO method (2) through the reliability (R or 
ZR) and variability (S0) terms.  Three general classes of recalibration methods are discussed 
in the following subsections, each of which should be  judged against the ability to make 
accurate predictions of pavement performance over time. 
 

3.1 Deflection‐Based Procedures 
Deflection‐based  procedures  rely  on  field  testing  of  existing  pavements  to  determine  in‐
place modulus.  The in‐place modulus is then correlated to a structural coefficient through 
existing  empirical  equations.    The  main  advantage  of  this  approach  is  that  it  requires 
relatively little data generation through deflection testing.  The main disadvantage is that 
the approach relies upon existing empirical equations that are based on past performance 

Timm, Robbins,       
Tran & Rodezno

13 
 

and  may  not  accurately  reflect  the  performance  of  the  pavement  materials  under 
evaluation.  The general procedure includes the following steps discussed in the subsections 
below: 
1. Identify and characterize pavement sections to be evaluated. 
2. Perform deflection testing on pavement sections. 
3. Backcalculate pavement layer properties. 
4. Compute new structural coefficients. 

 
 

3.1.1 Identify and Characterize Pavement Sections to be Evaluated 
The  first  step  is  to  identify  and  select  candidate  pavement  sections  to  include  in  the 
analysis.    Recently  constructed,  undamaged  pavement  sections  should  be  characterized 
since  the  structural  coefficient  is  meant  to  represent  “new”  conditions.    Information 
regarding  the  pavement  cross  section  that  includes  material  type  and  as‐built  layer 
thicknesses at the test location is critical. 
 

3.1.2 Perform Deflection Testing on Pavement Sections 
Deflection testing, using a falling weight deflectometer (FWD), should be conducted on the 
selected pavement sections.  For details regarding FWD best practices, consult the FHWA 
manual on field guidelines for FWD testing (13).    
 
Depending on the backcalculation scheme to be used, as discussed in the next subsection, 
the FWD should be configured to measure deflections at critical offsets.  At a minimum, the 
center  and  outer  (60  or  72  inches  from  load  center)  deflections  should  be  measured.  
Typically, deflections may be measured with 6 to 9 sensors, which include the center and 
outermost deflection measurements. 
 
Many  FWD’s  are  configured  to  test  at  multiple  load  levels.    To  determine  the  structural 
coefficient, it is important to have test results at 9,000 lb, which is the AASHTO standard 
load level.  This may be achieved either by setting the drop height to achieve 9,000 lb or by 
interpolating  results  from  multiple  load  levels.    For  example,  Figure  3.1  shows  the 
interpolation process from data collected at the NCAT Test Track (14).   In the figure, the 
center  (D1)  and  outermost  (D9)  deflections  were  plotted  against  load  level.    Regression 
equations were determined for each set of deflections from which deflection at the target 
load level was determined. 

Timm, Robbins,       
Tran & Rodezno

14 
 

 
Figure 3.1  Deflection versus Load Example (14). 

 
It is also important to measure and account for the temperature at the time of testing.  The 
AASHTO  system  is  currently  based  on  a  68F  (20C)  pavement  reference  temperature.  
Therefore, any deflection data must be adjusted to this reference temperature.  AASHTO (2) 
has  published  temperature  correction  charts  that  may  be  used  to  correct  the  center 
deflection  for  backcalculation.    Alternatively,  tests  could  be  conducted  over  a  range  of 
temperatures and deflections interpolated at the reference temperature as shown by the 
example  in  Figure  3.2.    The  center  deflection  (D1)  shows  a  strong  dependence  on 
temperature characterized by the corresponding regression equation.   The equation was 
used  to  establish  the  best  estimate  of  deflection  at  68F,  and  the  deflections  at  other 
temperatures were corrected to 68F represented by the D1 at 68F data series in Figure 3.2.  
The outermost deflection (D9) shows very little correlation with temperature, as expected, 
since  it  represents  the  behavior  of  the  subgrade  soil,  and  no  temperature  correction  is 
needed. This approach, though effective, would require accessing the pavement at multiple 
times to gather the required data and may not be practical in all situations.  In any case, it is 
important to have deflections representing the AASHTO reference temperature. 

Deflection = 0.0024*Load + 3.1322

R
2
= 0.9

9

Deflection9000 = 0.0024*9000+3.1322
= 24.732 milli-in

Deflection = 0.0002*Load – 0.319

6

R
2
= 0.99

Deflection9000 = 0.0002*9000-0.3196
= 1.480 milli-in

0
5
10

15

20

25

30

35

40

45

0

1
0

0
0

2

0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7

0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1

0
0
0

1
2

0
0
0

1
3

0
0
0

1
4

0
0
0

1
5

0
0
0

1
6

0
0
0

Load, lb

D
e

fl

e
c

ti
o

n

,
m

il
li

-i

n
.

D1

D9

AASHTO Reference Load = 9,000 lb

S9 – Location 1
July 26, 2010

Timm, Robbins,       
Tran & Rodezno

15 
 

 
Figure 3.2  Deflection vs. Temperature Example (14). 

3.1.3 Backcalculate Pavement Layer Properties 

There are several approaches to backcalculating  in‐place pavement  layer properties from 
measured deflections.  They range from relatively simple equations solved by hand or in a 
spreadsheet  to  very  complex  computational  algorithms  executed  in  self‐contained 
computer  programs.    Regardless  of  the  approach,  the  objective  of  any  backcalculation 
scheme  is  to  determine  the  layer  properties  under  the  given  applied  load  and 
environmental  conditions  that  produced  the  measured  deflections.    While  only  the 
relatively simple AASHTO two‐layer backcalculation procedure (2) is discussed here, there 
are  many  more  sophisticated  multi‐layer  backcalculation  programs  available  that  include 
EVERCALC, MODCOMP and MICHBACK, to name a few. 
 
The  AASHTO  two‐layer  backcalculation  approach  (2)  is  based  on  fundamental  pavement 
mechanics  and  determines  the  in‐place  subgrade  soil  modulus  (Mr)  and  the  composite 
modulus of all pavement layers (Ep) above the subgrade soil.  The approach was originally 
intended to provide estimates of in‐place effective structural number (SNeff) as part of the 
AASHTO  overlay  design  procedure  (2).    However,  it  can  also  be  used  to  provide  the 
information  necessary  to  find  structural  coefficients  as  will  be  demonstrated  in  the  next 
subsection. 
 
 

y = 3.5594e
0.0173

x

R
2
= 0.9304

y = 0.0043x + 0.9504

R
2
= 0.3555

0
5
10
15
20
25
30
35

0 20 40 60 80 100 120 140

Mid-Depth Temperature, F

D
e

fl
e

c
ti

o
n

a
t

9
,0

0
0

l
b

,
m
il
li

-i
n

D1
D9
D1 at 68F

AASHTO Reference Temp = 68F

S9-1 – All Dates

Timm, Robbins,       
Tran & Rodezno

16 

 

The  first  step  in  the  AASHTO  backcalculation  approach  is  to  determine  the  soil  modulus 
according to (2): 
 

 
r

P
M

r
R

*

*24.0


   (Equation 2)

where: 

MR = subgrade modulus, psi 
P = load magnitude, lb  (9,000 lb recommended by AASHTO) 

r = measured deflection at offset, r, in. 
r = radial offset, in.  

AASHTO (2) recommends a radial offset that exceeds 70% of the effective radius (ae) of the
stress bulb at the subgrade/pavement interface.   This is to insure that the sensor chosen 
provides only a measure of subgrade deflection while providing sufficiently high deflections 
to minimize the impact of measurement error.  The effective radius may be calculated by 
(2): 

2

32





R

p
e

M

E

Daa   (Equation 3) 

where: 

ae = effective radius of stress bulb at subgrade/pavement interface, in. 

a = FWD load plate radius, in. 

D = total pavement depth above subgrade, in. 

Mr = subgrade modulus computed from Equation 2, psi 

Ep = composite pavement modulus computed from Equation 4, psi 

Note  that  a  specific  sensor  offset  must  be  chosen  to  compute  the  subgrade  modulus 
according to Equation 2, but whether it satisfies the 70% of ae criteria cannot be checked 
until  further  computations  are  made  since  Equation  3  also  requires  the  composite 
pavement  modulus  (Ep).    After  the  subgrade  modulus  has  been  determined,  assuming  a 
sensor offset, Ep is backcalculated from the center deflection using the following equation 
(2): 

     (Equation 4) 



















































p

R

p
R

E

a
D

M
E
a
D
M

ap

2
2
3
1
1
1
1
1

1
**5.1

Timm, Robbins,       
Tran & Rodezno

17 
 

where: 

1 = center deflection, in. (called D1 above) 
p = contact pressure, psi (computed from load, P, and circular contact radius, a) 

a = FWD load plate radius, in. 
D = total pavement depth above subgrade, in. 
Mr = subgrade modulus computed from Equation 2, psi 

Ep = composite pavement modulus, psi 

 

Equation 4 is easily solved for Ep in a spreadsheet using some kind of iterative solution like 

the built‐in Solver function in Excel
®
 or using a bisection method to determine the correct Ep 

that will produce the measured center deflection.  After computing Ep, it should be used in 

Equation 3 with the other variables to check that the selected sensor met the radial offset 

requirement. 

3.1.4 Compute New Structural Coefficients 

There are two approaches to finding the AC structural coefficient both of which use the 
composite  pavement  modulus  (Ep).    The  first  may  be  used  with  individual  pavement 
sections  if  the  underlying  (non‐AC)  structural  and  drainage  coefficients  are  known  or 
assumed.  The second may be used if there are paired sections where the only difference 
between  sections  is  one  particular  AC  layer.    Both  approaches  rely  on  computing  the 
effective structural number from the composite pavement modulus. The effective structural 
number represents the structural integrity of the pavement as an empirical function of the 
thickness of the pavement and the composite pavement modulus. The equation was based 
on performance at the AASHO Road Test (1,2) and is expressed as: 
 

3**0045.0 peff EDSN    (Equation 5) 

where: 
SNeff = effective structural number of in‐place pavement 
D = total pavement depth above subgrade, in. 
Ep = composite pavement modulus, psi 
 

The  first  approach,  depicted  in  Figure  3.3,  assumes  that  the  structural  and  drainage 
coefficients of the layers beneath the AC are known.  If that is the case, then SNeff may be 
computed according to Equation 5 and equated to the other parameters by: 
 
SNeff = a1*D1 + a2*m2*D2+a3*m3*D3   (Equation 6) 
 
Since every parameter  in Equation 6  is known except for a1, the AC structural coefficient 
may be simply calculated as: 
 
a1 = [SNeff – a2*m2*D2 – a3*m3*D3] / D1  (Equation 7) 

Timm, Robbins,       
Tran & Rodezno

18 
 

 
 
 
 
 
 
 

 

 
Figure 3.3  SNeff Schematic. 

 
This approach was used  in a Kansas study (15) to determine the structural coefficient of 
crumb rubber modified asphalt mixtures.  In that study, the underlying base and subgrade 
layer  moduli  were  determined  through  backcalculation  and  correlated  to  structural 
coefficients through existing equations published by Ullidtz (16). 
 
The second approach that uses the SNeff computation relies on having two nearly identical 
pavements  where  only  one  layer  differs  between  the  two  sections  and  the  structural 
coefficient of one of the two different materials is known or assumed.  Figure 3.4 shows an 
example from the NCAT Test Track where two sections differed only in their surfacing layers 
while  the  underlying  materials  were  nearly  identical  with  only  slight  differences  due  to 
inevitable construction variation (14).  In this particular case, the objective was to establish 
a structural coefficient of the open graded friction course in Section S8 (14). 

Figure 3.4  Paired Test Sections (14). 

0
1
2
3
4
5
6
7
8
9
10

11

12

13

14

S8-OGFC S9-Control

D
e

p
th

B
e
lo

w
S

u
rf

a
c
e

,
in

.

12.5 mm NMAS OGFC PG 76-22
(5.1% AC, 25% Air Voids)

19 mm NMAS
PG 76-22

19 mm NMAS
PG 67-22

9.5 mm NMAS PG 76-22
(6.1% AC, 6.9% Air)

Crushed Aggregate Base

(4.6% AC, 6.3% Air Voids) (4.4% AC, 7.2% Air Voids)

(4.9% AC, 8.3% Air Voids) (4.7% AC, 7.4% Air Voids)

Asphalt Concrete (a1 unknown) 

Granular Base (a2 & m2 known) 

Granular Subbase (a3, m3 known) 

Subgrade (Mr) 
 
                 D1 
         D2 
D3 
SNeff 

Timm, Robbins,       
Tran & Rodezno

19 
 

 
The procedure involves computing Ep for each section from which SNeff is determined.  Since 
the sections are nearly  identical except for one  lift of AC, any difference  in SNeff may be 
attributed to the difference in that one lift.   From a general perspective, the SNeff of two 
pavements (A and B) may be computed as: 
 
SNeffA = a1A*D1A + a2*m2*D2+a3*m3*D3  (Equation 8) 
SNeffB = a1B*D1B + a2*m2*D2+a3*m3*D3  (Equation 9) 
 
Taking the difference between Equations 8 and 9, assuming everything below the first layer 
is equivalent, yields: 

SNeffA – SNeffB = SN = a1A*D1A – a1B*D1B  (Equation 10) 
 
Assuming that pavement A has a known structural coefficient (a1A), and having measured 

the  SN  and  thickness  of  both  pavement  layers,  then  the  structural  coefficient  of  the 
unknown layer may be computed by solving Equation 10 for a1B: 
 

a1B = [a1A*D1A – SN] / D1B  (Equation 11)

This procedure was followed for the sections in Figure 3.4, and the data are summarized in 

Figure 3.5.  The computed difference (SN) between the two sections, which was shown to 
be statistically significant (14), was 0.45.  The equations shown in Figure 3.5 follow the form 
of Equation 11, which produced an OGFC structural coefficient equal to 0.15 (14). 
 

Timm, Robbins,       
Tran & Rodezno

20 
 

 
Figure 3.5  Computed SNeff and Computed OGFC Structural Coefficient (14). 

 

Aside from the two methods described above, there are a variety of existing equations to 
estimate  structural  coefficient  from  the  backcalculated  in‐place  AC  modulus,  which  is 
different than composite pavement modulus (Ep) determined from the AASHTO two‐layer 
backcalculation.  A  backcalculated  AC  modulus  is  determined  through  a  multilayer 
backcalculation program and should be used in conjunction with the structural coefficient 
equations  listed  in  Table  3.1.    Since  the  equations  are  empirical,  the  original  references 
should be consulted to determine  if the test conditions are applicable to the pavements 
currently under evaluation. 
 

Table 3.1  Asphalt Concrete Structural Coefficient Equations 

Material Type  Equation  Reference 

Asphalt Concrete 
a1 = 0.171*ln(EAC) – 1.784 

where EAC = AC modulus, psi 

Asphalt Concrete 
a1 = 0.4*log(EAC/3000) + 0.44 
where EAC = AC modulus, MPa 

16 

Crumb Rubber  
Asphalt Concrete 

a1 = 0.315*log(EAC) – 1.732 
where EAC = AC modulus, MPa 

15 

 
As noted above, it must be re‐emphasized that these deflection‐based methodologies rely 
on past‐performance characterization and may not accurately reflect performance of new 
or site‐specific materials.  They should only be used if performance data are not available, 

3.11

2.66

0
0.5
1

1.5

2

2.5

3

3.5

4

4.5

5

S8 S9

A
ve

ra
g

e
S

N
e

ff

SN = 0.45

15.0
35.1

45.022.1*54.0




OGFC

OGFC

surfacecontrolcontrol
OGFC

a
D

SNDa
a

Timm, Robbins,       
Tran & Rodezno

21 
 

or more preferably, in conjunction with performance data as explained in the subsequent 
sections. 
 

3.2 Performance‐Based Procedure 
Recalibration  of  the  asphalt  layer  coefficient  based  on  observed  pavement  performance 
most  closely  matches  how  the  coefficients  were  originally  calibrated  (1).    This  approach 
should  be  considered  an  improvement  over  deflection‐based  procedures  because  it 
considers the actual performance of the material under investigation rather than relying on 
previously developed correlations.  The main disadvantage of this approach is that detailed 
traffic and pavement performance records over time are needed, thus pavements selected 
for evaluation must be done so carefully.   Also, this approach  is not generally capable of 
discerning individual lifts of asphalt. 
 
Figure  3.6  summarizes  the  performance‐based  recalibration  procedure  as  previously 
documented by Peters‐Davis and Timm (8).  The procedure relies on two primary data sets.  
The first  is historical traffic data  in terms of axle weights, axle configuration and volume, 
which are needed to compute ESALs over time.  The second is performance data expressed 
as International Roughness Index (IRI), which can be converted to pavement serviceability 
(PSI) over time.   As shown  in Figure 3.6 and explained further below, these two primary 
data  sets  are  used  in  several  equations  to  generate  the  actual  ESALs  applied  to  the 
pavement and the predicted ESALs that the pavement is expected to withstand.  Since the 
asphalt structural coefficient (a1)  is used to determine the structural number (SN), which 
appears in both the actual and predicted ESAL equations, â1 may be iteratively adjusted to 
minimize the error between actual and predicted ESALs.  The â1 symbol is used to indicate 
that it is a value that will be determined through a best‐fit iterative procedure.  This is the 
essence of how the original calibration was done for the AASHO Road Test results (1,8).  The 
following subsections detail the procedural elements of Figure 3.6. 

Timm, Robbins,       
Tran & Rodezno

22 
 

 
Figure 3.6  Performance‐Based Recalibration Procedure (8). 

 
 
 

Traffic Data Set  
(axle passes, weights, etc.) 

Performance (IRI) 
Data Set  

pt ΔPSI 

(Al‐Omari/Darter equation) 

Actual ESALs  
(Wtx/Wt18 equation) 

(AASHO Road Test traffic equations: 
Gt, βx, EALF, ESAL) 

SN

Predicted ESALs  
(logW18 equation) 

(AASHTO  
flexible pavement  
design equation) 

Actual ESALs 

P
re
d
ic
te
d
 E
S
A
Ls
 

*
*
*

â 1 

*Minimize error between actual and predicted by 
changing only a1 

Timm, Robbins,       
Tran & Rodezno

23 
 

3.2.1 Performance (IRI) Data 
The  AASHTO  procedure  requires  pavement  performance  expressed  in  terms  of  present 
serviceability  index  (PSI).    However,  many  agencies  do  not  collect  PSI  values  as  part  of 
pavement  management  activities,  but  rather  IRI.    Therefore,  there  is  typically  a  need  to 
convert IRI to PSI so the data may be used within the AASHTO system.  While there are a 
number of equations available in the literature (e.g., 17‐19), one recommended for use by 
the National Highway Institute and used in a previous investigation (8) was developed by Al‐
Omari  and  Darter  (20)  and  recommended  for  use  in  this  document.    It  was  based  on 
studying pavements from 5 different states and yielded an R

2
 of 0.81 (20): 

 
 IRIePSI  0038.05   (Equation 12) 

 
where: 
PSI = present serviceability index (0‐5 scale) 
IRI = International Roughness Index, in./mile 
 
Once IRI data versus time for a pavement section have been obtained, it is straightforward 
to convert from IRI to PSI using Equation 12 and develop performance curves, such as those 
shown  in  Figure  3.7.    Note  in  the  figure  that  the  data  are  separated  by  wheelpath 
representing  the  left  (LPSI),  right  (RPSI)  and  average  (AvgPSI)  serviceability  ratings.    If 
datasets  from  both  wheelpaths  are  available,  it  is  recommended  to  use  the  data  set 
representing the worst performance in the recalibration process to be conservative.  At this 
stage, it is important to establish the initial serviceability (po) and terminal (pt) calibration 

points.    These  will be used to establish PSI values and points  in time corresponding to 
cumulative ESAL applications at those times. 

Figure 3.7  PSI Data Obtained from IRI Data (8). 

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

28-Jun-03 14-Jan-04 01-Aug-04 17-Feb-05 05-Sep-05 24-Mar-06

Date

P
S

I

L

PSI

RPSI
AvgPSI
P

t

Pt calibration points

Po 

Timm, Robbins,       
Tran & Rodezno

24 
 

3.2.2 Traffic Data and Actual ESALs 
It  is  imperative  that  reasonably  accurate  historical  traffic  records  are  obtained  for  this 
recalibration  procedure.    Information  regarding  axle  types  (single,  tandem,  tridem),  axle 
weights  and  volume  of  axles  is  critical  in  computing  the  actual  ESALs  applied.    This 
information  may  come  from  weigh‐in‐motion  or  static  scale  sites.    After  assembling  the 
necessary information, the total actual ESALs must be computed as detailed below. 
 
As  described  by  Peters‐Davis  and  Timm  (8),  the  AASHTO  Design  Guide  (2)  quantifies 
pavement damage using Equivalent Axle Load Factors (EALFs), which are used to find the 
number of ESALs.  An EALF quantifies the damage done per pass of any axle relative to the 
damage done per pass by a standard axle (typically an 18‐kip single axle).   This equation 
comes from the results of the AASHO Road Test (1), and is expressed as follows according to 
Huang (21):  
 

tx

t

W

W
EALF 18   (Equation 13) 

where: 
Wtx = number of x axle load applications at time t 
Wt18 = number of 18 kip axle load applications at time t 
 

Equations 14b and 14c are used within 14a to generate the Wtx/Wt18 value from which the 
EALF value may be determined from Equation 13 for any axle type relative to the standard 
(21).    Equation  14a  represents  the  fourth‐power  relationship  presented  in  Figure  2.1, 
though  it  is  impossible  to  clearly  see  the  fourth‐power  trend  in  the  equation  due  to  its 
complexity. 
 

 
18

22
18

log33.4log79.41252.6log


t
x

t
x

t

tx GGLLL
W

W





   (Equation 14a) 

 







5.12.4

2.4
log tt

p
G    (Equation 14b) 

 

 
  23.32

19.5

23.3
2

1

081.0
40.0

LSN

LLx
x




   (Equation 14c) 

 
where: 
Lx = axle group load in kips 
L2 = axle code (1 for single, 2 for tandem and 3 for tridem) 
SN = structural number 
Wtx = number of x axle load applications at time t 
Wt18 = number of 18 kip axle load applications at time t 

x = a function of design and load variables 

Timm, Robbins,       
Tran & Rodezno

25 
 

18 = value of βx when Lx is equal to 18 and L2 is equal to one 
pt = terminal serviceability determined from IRI data converted to PSI 
Gt = a function of serviceability levels 
 
The EALFs for each axle load group, determined by equations 13 and 14 above, are used to 
find the total damage done during the design period, which is defined in terms of passes of 
the standard axle load (ESALs), as shown in the following equation (21): 
 



m

i
ii nEALFESAL

1

  (Equation 15) 

 
where: 
ESAL = actual ESALs 
m = number of axle load groups 
EALFi = EALF for the ith axle load group 
ni = number of passes of the ith axle load group during the design period 
   

It is important to note that Equation 14b requires a terminal serviceability value, pt.  This 
comes directly from the discussion above in subsection 3.2.1.  Also, Equation 14c requires 
an SN value, which may be computed for the pavement as previously defined: 
 

SN = â1*D1 + a2*m2*D2+a3*m3*D3  (Equation 16) 
 
It  is  assumed  for  the  purposes  of  this  recalibration  procedure  that  the  thicknesses  are 

known and the non‐AC structural and drainage coefficients are known.  Therefore, â1 is the 
only unknown and is the value that will be adjusted, as noted in Figure 3.6, to arrive at the 
best match between actual and predicted ESALs. 
 

3.2.3 Predicted ESALs 
The predicted ESAL computation is made directly by the AASHTO pavement design equation 
presented earlier (Equation 1) and repeated here as Equation 17.  A primary input to the 

equation is the pavement performance characterized by PSI obtained through the IRI data 
set. 

 
 

07.8log32.2

1

1094
4.0

5.12.4
log
20.01log36.9log
19.5

018 







 RR M
SN
PSI

SNSZW  (Equation 17) 

where: 
logW18 = predicted ESALs 
ZR = standard normal deviate for a given reliability 
S0 = standard deviation 
ΔPSI = difference between initial and terminal serviceability at time t 
MR = resilient modulus of the subgrade, psi 

Timm, Robbins,       
Tran & Rodezno

26 
 

SN = structural number (Equation 16) 
 
Equation 17 is normally used for design, where ESALs (W18) are input, SN is computed and a 
reliability in excess of 50% is used to act as a safety factor when determining the required 
structural number.  However, in the case of recalibration, the objective is to closely match 
predicted and actual ESALs applied without this design safety factor applied.   Therefore, 
reliability should be set at 50% (average), which yields a standard normal deviate equal to 0 
and the ZRS0 term drops out of Equation 17. 

The  PSI  term  should  be  obtained  as  described  in  Section  3.2.1,  and  the  SN  term  is  as 
defined  in  Equation  16  based  on  the  iterative  â1  term.    The  soil  resilient  modulus  (MR) 
should be calculated from falling weight deflectometer (FWD) testing of the section at a 
9,000 lb load level.  Refer to Section 3.1.1 and Equation 2 for the AASHTO recommendations 
regarding  determination  of  subgrade  soil  modulus.    AASHTO  further  recommends,  when 
using  Equation  17,  that  the  MR  value  determined  through  backcalculation  be  divided  by 
three to account for differences in how testing was conducted during the AASHO Road Test 
versus modern FWD testing (2).  This AASHTO (2) recommendation is only for fine‐grained 
cohesive soils and no recommendation is made for granular, coarse‐grained soils.  Finally, if 
the soil modulus changes appreciably with the seasons, it is recommended that the AASHTO 
procedure for adjusting soil modulus to reflect these seasonal changes be followed (2).  This 
requires  testing  at  multiple  times  during  the  course  of  a  year  to  establish  the  seasonal 
trends and using another AASHTO empirical equation that relates pavement damage to soil 
modulus  to  compute  a  weighted  average  soil  modulus  based  on  seasonal  duration  and 
damage potential (2). 

3.2.4 Determination of â1
For a given pavement section, the outcome of subsections 3.2.1 through 3.2.3 is a simple 

table  listing  the  predicted  and  actual  ESALs  at  specific  points  in  time  for  a  particular  â1 
value.  For example, Table 3.2 shows the actual and predicted ESALs for an NCAT Test Track 
section assuming 0.44 as the asphalt structural coefficient.  Notice that the predicted ESALs 
far underestimate the actual ESALs applied by 46% to 65%.  The objective is now to improve 

the prediction by adjusting â1 such that the error is minimized.  It is recommended to follow 
a least‐squares regression procedure to minimize the error. 
 

Table 3.2  Example ESAL Differences Assuming a1 = 0.44 (8) 

Predicted ESALs Actual ESALs Difference % Error 

802,367  2,267,922  1,465,555  ‐65% 

1,126,574  2,837,091  1,710,517  ‐60% 

1,270,712  2,963,064  1,692,352  ‐57% 

1,638,661  3,212,141  1,573,480  ‐49% 

2,340,290  4,321,771  1,981,481  ‐46% 

 
 

Timm, Robbins,       
Tran & Rodezno

27 
 

Following  standard  statistical  regression  procedures  (22),  the  differences  between  actual 
and predicted ESALs must be squared and summed to obtain the error sum of squares (SSE), 
which is defined as: 

 

  
i

ii ActualESALSALPredictedESSE
2
  (Equation 18) 

 

Next, the mean should be obtained for the actual ESALs (ActualESAL) and the difference 
between  that  mean  and  each  predicted  ESAL  level  must  be  squared.    The  sum  of  these 
values represent the total sum of squares (SST): 
 

  
i

i ActualESALSALPredictedE

SST

2
  (Equation 19) 

 
The Pearson’s coefficient of determination (R

2
) may be calculated from the SSE and SST as a 

measure of how well the predicted and actual ESALs match (22): 

SST

SSE
R  12    (Equation 20) 

 
To perform the regression, it is recommended to use the Solver add‐in within Excel.  Solver 
may be set to minimize the SSE term while only changing the AC layer coefficient (â1).  This 
process is inherently iterative in nature: every time the layer coefficient changes (i.e., from 
0.44 to a new regressed value), both the actual and predicted ESALs change.  This is because 
both of these values are calculated using the structural number (SN), which  is calculated 
using  the  layer coefficient  (â1).    However,  Excel  should  automatically converge  to  a  final 
least‐squares solution. 
 
Figure 3.8 summarizes the before and after calibration results for the example shown  in 
Table 3.2.   This regression resulted in a HMA layer coefficient of 0.50 and an R

2
 equal to 

0.74.  There is a noticeable improvement in the actual vs. predicted ESAL differences after 
the  regression  was  completed.    It  is  also  important  to  note  that  the  errors  were  not 
completely eliminated.  The objective of the regression procedure is to minimize error and 
bias, not to eliminate these factors. 
 

Timm, Robbins,       
Tran & Rodezno

28 
 

Figure 3.8  Actual vs. Predicted ESALs Before and After Calibration. 

 
The  procedure  described  above  formed  the  basis  of  the  ALDOT  newly‐recommended 
asphalt  structural  coefficient  equal  to  0.54  (8).    Figure  3.9  shows  the  range  of  values 
obtained in that investigation, which found all the values were within the range originally 
calculated at the AASHO Road  Test (1) that varied from 0.33 to 0.83.   When conducting 
recalibration, it is important to check the final results for reasonableness against the original 
values.  It is also important to select a range of pavement sections that exhibited a range of 
performance  to  avoid  biasing  the  recalibrated  coefficient  toward  conservative  or  liberal 
designs.  In the case of the Test Track sections depicted in Figure 3.9, they represented a 
range of cross‐sections that included a variety of thicknesses (5 inches to 14 inches of AC), 
two subgrade types (AASHTO A‐4 and A‐7‐6) and different types of aggregate base.  They 
also  included a range of AC materials that  included unmodified and SBS‐modified asphalt 
binder, SMA, and mixtures designed as a rich‐bottom (2% air voids).  This variety of cross‐
sections resulted in a wide range of performance histories that included bottom‐up fatigue 
cracking,  surface  rutting,  substructure  rutting,  top‐down  cracking  and,  in  some  cases,  no 
measurable distress (8). 
 

Timm, Robbins,       
Tran & Rodezno

29 
 

 
Figure 3.9  NCAT Test Track Asphalt Layer Coefficients (8). 

 
3.3 Mechanistic‐Empirical Procedures 

The  last  procedure  to  consider  relies  upon  using  the  MEPDG,  locally  calibrated  with 
performance  data,  to  establish  pavement  layer  thicknesses  from  which  the  structural 
coefficients  may  be  determined.    This  comprehensive  approach,  developed  and  used  in 
Washington  (11),  is  conceptually  straightforward  but  very  time  and  data  intensive.  
Agencies should consider this approach if efforts are already in progress toward calibrating 
the MEPDG or if local calibration has been completed.  The general steps are as follows and 
discussed in the following subsections: 
1. Locally calibrate the MEPDG. 
2. Use the locally calibrated MEPDG to generate pavement thickness designs. 
3. Recalibrate a1 to match AASHTO empirical designs to MEPDG designs. 
 

3.3.1 MEPDG Local Calibration 
Local calibration of the MEPDG is no easy task and full discussion of this topic is outside the 
scope of this document.  However, detailed procedures were published in 2010 by AASHTO 
(23) that should be followed to execute local calibration of the MEPDG.  As a brief summary, 
the  MEPDG  local  calibration  procedure  involves  identifying  candidate  pavement  sections 
that have: 

 as‐built material property characterization 
 performance data in terms of cracking, rutting and ride quality 
 traffic history data characterized as load spectra 
 detailed climate records 
 
Once each of these data sets has been developed, pavement sections are simulated in the 
MEPDG software with trial calibration coefficients, which predict performance over time.   

0.50

0.59
0.56

0.63 0.62
0.58

0.48

0.59 0.58

0.43
0.48

0.44
0.41

0.68

0.54

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

N
1

2

0
0
3

N

1
2

0

0
6

N
2
2

0
0
3
N
2
2

0
0
6

N
3
2

0
0
3

-2
0

0
6

N
4
2

0
0
3
-2
0
0
6

N
5
2

0
0
6

N
6
2

0
0
3
-2
0
0
6

N
7
2

0
0
3
-2
0
0
6

N
8
2

0
0
3
N
8
2
0
0
6

N
9
2

0
0
6
N
1

0
2

0
0
6

S
1

1
2
0
0
6
A
ve
ra
g
e

L
a

y
e
r

C
o

e
ff

ic
ie

n
t

Timm, Robbins,       
Tran & Rodezno

30 
 

Comparisons  between  the  MEPDG  predictions  and  actual  performance  are  made,  from 
which the calibration coefficients may be adjusted to reduce the bias and error so that the 
MEPDG makes realistic predictions of measured pavement performance.  The outcome of 
the MEPDG calibration procedure is a new set of calibration coefficients specific to a state 
or  region  for  various  distress  predictions.    For  example,  Table  3.3  lists  the  calibration 
coefficients obtained by the WSDOT study (11).    It  is  important to emphasize that these 
coefficients  are  specific  to  WSDOT  as  they  were  calibrated  to  performance  data  in  the 
Washington State Pavement Management System (WSPMS). 

 
Table 3.3  WSDOT MEPDG Calibration Results (data from 11) 

Distress  Coefficient
Original (National 
Calibration) Value 

Local Calibration 
Value 

AC Fatigue 

f1  1  0.96 
f2  1  0.945 
f3  1  1.055 

Longitudinal Cracking 

C1  7  6.42 

C2  3.5  3.8 

C3  0  0 

C4  1,000  1,000 

Alligator Cracking 

C1  1  1 

C2  1  1 

C3  6,000  6,000 

AC Rutting 

r1  1  1.05 
r2  1  1 
r3  1  1.06 

Subgrade Rutting  s1  1  0 
 

3.3.2 Use MEPDG to Generate Pavement Thicknesses 
Once the MEPDG has been well calibrated, it is possible to execute pavement designs under 
a variety of conditions to determine the required asphalt concrete thickness.  In the WSDOT 
study, for example, Li et al. (11) developed pavement thicknesses under a range of traffic 
levels  and  corresponding  reliabilities  as  part  of  updating  the  WSDOT  pavement  design 
catalog.  They fixed the aggregate base thickness according to WSDOT construction practice 
and  experience  and  determined  the  required  AC  thickness  using  the  local‐calibration 
coefficients  listed  above  in  the  MEPDG  (11).    Table  3.4  summarizes  the  required  AC 
thickness for the six traffic and reliability levels in the WSDOT design catalog. 

 
 
 
 
 
 
 

Timm, Robbins,       
Tran & Rodezno

31 
 

Table 3.4  WSDOT Design Comparisons (data from 11) 

50‐Year 
ESALs, 
Millions 

Reliability 
Base Thickness, 

in. 

AC Thickness by Method 

MEPDG 
AASHTO 1993 

a1=0.44  a1=0.50 

5  85%  6  6  7.5  6.5 

10  85%  6  7.4  8.5  7.5 

25  95%  6  9.0  11.2  9.9 

50  95%  7  11.2  12.3  10.8 

100  95%  8  12.1  13.3  11.8 

200  95%  9  13.2  14.5  12.8 

 
3.3.3 Recalibrate a1 to Match MEPDG Thicknesses 

After establishing AC thicknesses for a range of pavement conditions with the MEPDG, the 
AASHTO empirical procedure is used to determine corresponding AC thicknesses.  Table 3.4 
shows thicknesses resulting from the 1993 AASHTO Guide (2) assuming 0.44 as the default 
structural  coefficient.    On  average,  using  0.44  results  in  pavements  overdesigned  by  1.4 
inches.  Li et al. (11) recalibrated a1 to 0.50 resulting in an average difference of 0.07 inches, 
which was considered negligible.  In other words, 0.50 better reflects the performance of 
asphalt materials in Washington as characterized by actual pavement performance data and 
modeling within the MEPDG. 
 
The  mechanistic‐empirical  approach  to  recalibration  using  the  MEPDG  is  the  most  data 
intensive procedure.  However, for states in the process of calibrating and implementing the 
MEPDG,  it  may  be  a  viable  option.    It  also  serves  the  dual  purpose  of  providing  similar 
pavement design results with both the older empirical and newer M‐E procedures.  This is 
desirable since even when the new system is adopted, there may be many scenarios that do 
not warrant its use and the empirical design system will be employed.  It is important that 
the empirical design system accurately reflect modern pavement performance. 

4. CONCLUSIONS AND RECOMMENDATIONS 
Though mechanistic‐empirical pavement design may gain widespread use across the U.S. in 
the coming years, there is a need to update the AASHTO empirical pavement design system 
to account for advances in pavement materials, construction and performance.  Updating 
the  structural  coefficient  can  help  optimize  asphalt  pavement  cross  sections  leading  to 
better use of financial and natural resources.  This recalibration document described three 
general  approaches  to  recalibrating  the  asphalt  structural  coefficient,  which  are 
summarized  in  Table  4.1.    Based  on  the  information  provided  in  this  document,  the 
following conclusions and recommendations are made: 
1. The  asphalt  layer  coefficient  originally  recommended  by  AASHO  in  1962  (1)  is  not 

necessarily  applicable  in  all  situations.    Studies  in  Alabama  (8)  and  Washington  (11) 
found  a  higher  value  better  reflected  actual  performance.    The  values  in  each  state 
(Alabama  =  0.54;  Washington  =  0.50)  were  remarkably  similar  despite  geographical 

Timm, Robbins,       
Tran & Rodezno

32 
 

distance  and  different  approaches  taken  in  the  recalibration  process.    State  agencies 
might consider evaluating their value with respect to actual pavement performance. 

2. Deflection‐based  approaches  can  provide  structural  coefficients  in  a  relatively  short 
time with relatively little data required.  However, regression equations were developed 
from  past  pavement  performance  observations  that  may  not  accurately  reflect  the 
material  under  investigation.    In  the  absence  of  historical  performance  records, 
deflection‐based  approaches  may  be  considered  to  provide  provisional  structural 
coefficients  until  the  new  coefficient  is  validated  with  material‐specific  performance 
data. 

3. The  performance‐based  method  used  by  Alabama  (8)  most  closely  replicates  the 
process  used  to  develop  the  original  AASHO  structural  coefficient.    Though  historical 
traffic  and  performance  records  (i.e.,  IRI)  are  needed,  the  data  are  often  readily 
available  and  collected  as  part  of  routine  pavement  management  activities  in  many 
states. 

4. The  MEPDG  approach  is  the  most  time  and  data‐intensive  procedure  to  follow.    It 
should  only  be  undertaken  if  MEPDG  calibration  activities  are  already  in  process  or 
completed.  One could view this approach as an additional useful output of the MEPDG‐
calibration  process,  as  it  allows  states  to  continue  using  the  AASHTO  empirical 
procedure  and  produce  pavement  designs  consistent  between  the  MEPDG  and 
empirical approach. 

5. The  results  of  any  recalibration  investigation  should  be  checked  against  the  range  of 
original  AASHO  values  and  other  investigations.    The  fact  that  the  Alabama  and 
Washington  coefficients  after  recalibration  were  so  similar,  despite  very  different 
conditions and recalibration procedures, lends confidence to using the new values. 

6. Local  agencies  or  municipalities  that  may  not  have  all  the  information  required  for 
recalibration could still perform recalibration by utilizing existing information available 
through state or other local agencies for similar roadways in their geographic regions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Timm, Robbins,       
Tran & Rodezno

33 
 

Table 4.1  Summary of Methods 

Procedure Type  General Process  Advantages  Disadvantages 

Deflection‐ 
Based 

Conduct deflection testing on 
existing pavement section.  
Use deflection data to 
backcalculate pavement 
properties.  Correlate 
backcalculated properties to 
structural coefficients using 
pre‐existing equations. 

Relatively rapid 
procedure. 
 
Requires only short‐
term data sets. 
 
Relatively little 
deflection testing 
needed. 

Does not 
correlate to 
section‐specific 
performance. 
 
Relies primarily 
on past 
correlation 
studies. 

Performance‐
Based 

Pavement ride quality data 
are used to quantify changes 
in pavement serviceability 
over time.  These changes 
are correlated to measured 
traffic levels (Actual ESALs) 
and the structural number 
equation is used to provide 
predicted traffic levels 
(Predicted ESALs).  The 
structural coefficient is used 
as a calibration coefficient to 
minimize the error between 
actual and predicted ESALs. 

Most closely 
replicates how the 
original AASHO layer 
coefficients were 
determined. 
 
Calibrates to actual 
pavement 
performance. 
 
Relatively simple 
method, once traffic 
and performance 
records have been 
compiled. 

Historical 
performance data 
needed. 
 
Historical traffic 
data (ESALs) 
needed. 

Mechanistic‐
Empirical 

The MEPDG is locally 
calibrated and used to 
generate pavement thickness 
designs.  The asphalt layer 
coefficient is then 
recalibrated to provide 
thicknesses that match the 
MEPDG thicknesses. 

Calibrates both 
empirical and M‐E 
approaches. 
 
Calibrates to actual 
pavement 
performance. 
 
Provides continuity 
between design 
systems. 

Most intensive 
procedure in 
terms of required 
data. 
 
Requires 
calibration of the 
MEPDG, which is 
a costly and time‐
consuming 
process. 

 
 
 
 
 
 
 

Timm, Robbins,       
Tran & Rodezno

34 
 

5. REFERENCES 
1. Highway Research Board, “The AASHO Road Test”, Report 5, Pavement Research Special 

Report 61E, National Academy of Sciences – National Research Council, Washington, DC, 
1962. 

2. AASHTO Guide for Design of Pavement Structures. Washington D.C.: American 
Association of State and Highway Transportation Officials, 1993. 

3. Timm, D.H., M.M. Robbins, N. Tran and C. Rodezno, “Flexible Pavement Design – State 
of the Practice,” National Asphalt Pavement Association, 2014. 

4. AASHTO, Mechanistic‐Empirical Pavement Design Guide, A Manual of Practice, Interim 
Edition, July 2008. 

5. Pierce, L.M. and G. McGovern, “Implementation of the AASHTO Mechanistic‐Empirical 
Pavement Design Guide (MEPDG) and Software,” Third Draft, NCHRP Project 20‐05, 
Topic 44‐06, October, 2013. 

6. George, K.P., “Structural Layer Coefficient for Flexible Pavement,” ASCE Journal of 
Transportation Engineering, Vol. 110, No. 2, 1984, pp. 251‐267. 

7. AASHO, “AASHO Interim Guide for Design of Pavement Structures‐1972,” Washington, 
D.C., 1972. 

8. Peters‐Davis, K. and D.H. Timm, “Recalibration of the Asphalt Layer Coefficient,” Report 
No. 09‐03, National Center for Asphalt Technology, Auburn University, 2009. 

9. Timm, D.H. and A.L. Priest, “Material Properties of the 2003 NCAT Test Track Structural 
Study,” Report No. 06‐01, National Center for Asphalt Technology, Auburn University, 
2006. 

10. Davis, K. and D. Timm, “Structural Coefficients and Life Cycle Cost,” Proceedings, T&DI 
Congress 2011: Integrated Transportation and Development for a Better Tomorrow, 
Proceedings of the First T&DI Congress 2011, American Society of Civil Engineers, 
Chicago, IL, 2011, pp. 646‐655. 

11. Li, J., J.S. Uhlmeyer, J.P. Mahoney and S.T. Muench, “Use of the 1993 AASHTO Guide, 
MEPDG and Historical Performance to Update the WSDOT Pavement Design Catalog,” 
WA‐RD 779.1, Washington State Department of Transportation, 2011. 

12. Kuennen, T., “How Alabama Gets More Bang for Its Asphalt Buck,” Volume 15, No. 1, 
Hot Mix Asphalt Technology, January/February 2010, 30‐35. 

13. FHWA, “LTPP Manual for Falling Weight Deflectometer Measurements Operational Field 
Guidelines,” Version 3.1, August 2000. 

14. Timm, D.H., A. Vargas‐Nordcbeck, “Structural Coefficient of Open Graded Friction 
Course,” Transportation Research Record 2305, Transportation Research Board, 2012, 
pp. 102‐110. 

15. Hossain, M., A. Habib and T.M. LaTorella, “Structural Layer Coefficients of Crumb 
Rubber‐Modified Asphalt Concrete Mixtures,” Transportation Research Record No. 
1583, Transportation Research Board, 1997, pp. 62‐70. 

16. Ullidtz, P., “Pavement Analysis,” Elsevier, N.Y., 1987, pp. 221‐223. 
17. Gulen, S., R. Woods, J. Weaver, and V.L. Anderson, Correlation of Present Serviceability 

Ratings with International Roughness Index. Transportation Research Record 1435, 
Transportation Research Board, Washington, D.C. 1994. 

Timm, Robbins,       
Tran & Rodezno

35 
 

18. Holman, F., Guidelines for Flexible Pavement Design in Alabama. Alabama Department 
of Transportation, 1990. 

19. Hall, K.T., and C.E.C. Munoz, Estimation of Present Serviceability Index from 
International Roughness Index. Transportation Research Record 1655, Transportation 
Research Board, Washington, D.C. 1999. 

20. Al‐Omari, B. and M.I. Darter, Relationships between International Roughness Index and 
Present Serviceability Rating. Transportation Research Record 1435, Transportation 
Research Board, Washington, D.C. 1994. 

21. Huang, Y.H., Pavement Analysis and Design. 2nd ed. New Jersey: Prentice Hall, 2004. 
22. McClave, J.T. and F.H. Dietrich II, Statistics, Sixth Edition, MacMillan College Publishing 

Company, New York, New York, 1994. 
23. AASHTO, “Guide for the Local Calibration of the Mechanistic‐Empirical Pavement Design 

Guide,” American Association of State Highway and Transportation Officials, 
Washington, D.C., 2010.

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP