Machine Learning-Python

Machine Learning homework (using Python Language) 

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Fill in the 3 functions in the .py file, using the output sample file for verification.

-1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

5.219759202928908604e-01 1.000000000000000000e+00

7.500000000000000000e-01 1.000000000000000000e+00

-1.000000000000000000e+00

-1.000000000000000000e+00

1.000000000000000000e+00

-1.000000000000000000e+00

-1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

-1.000000000000000000e+00

-1.000000000000000000e+00

1.000000000000000000e+00

-1.000000000000000000e+00

-1.000000000000000000e+00

1.000000000000000000e+00

1.000000000000000000e+00

-1.000000000000000000e+00

4.610215053763441206e-01

1.000000000000000000e+00

2.096774193548387177e-01 5.219759202928908604e-01

1.000000000000000000e+00
2.999999999999999889e-01 2.000000000000000111e-01 -1.000000000000000000e+00
7.083333333333334814e-01 1.212546219558842397e-01
3.145161290322581182e-01 8.425529589624960458e-01
7.505603971557407439e-01 7.491774154517092388e-01
5.134408602150538625e-01 6.367279284530336092e-01
6.908602150537634934e-01 3.981166098978160539e-01
5.967741935483872329e-01
7.500000000000000000e-01
1.760752688172043390e-01 2.942933644195916409e-01
9.408602150537634379e-02 7.624086992950946939e-01
4.610215053763441206e-01 7.587657784011219153e-01
5.793010752688172449e-01 1.358263055317753543e-01
6.034946236559141086e-01 2.505783136919181864e-01
1.922043010752688408e-01 9.281615999708565656e-01
9.247311827956991026e-01 1.485765286606801350e-01
6.263440860215054862e-01 8.152310522577002061e-01
3.736559139784947359e-01 5.529407478916594787e-01
3.400537634408602461e-01 4.272599770495983940e-01
8.346774193548388565e-01 6.312635471120744413e-01
2.352150537634409011e-01 6.640498351578294489e-01
5.026881720430108613e-01 4.400102001785031192e-01
7.809139784946237395e-01 2.833646017376731940e-01
6.868279569892473679e-01 6.021201799602921012e-01
4.099462365591398649e-01 2.578641554798637436e-01
8.753392470082510535e-01

Testing your Homework 2 Solutions…

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

In [1]: import numpy as np

In [2]: import homework2solution as hw

In [3]: #Testing the find_closest_example function

In [4]: #We’ll place a datapoint in each quadrant (in 2D plane example)

In [5]: tdata = np.array([ [-1,1], [1,1], [1, -1], [-1, -1] ])

In [6]: hw.find_closest_example(tdata, np.array([-6,9]) )

Out[6]: 0

In [7]: hw.find_closest_example(tdata, np.array([4,9]) )

   …:

Out[7]: 1

In [8]: hw.find_closest_example(tdata, np.array([-3,-4]) )

Out[8]: 3

In [9]: hw.find_closest_example(tdata, np.array([3,-4]) )

Out[9]: 2

In [10]: #Note that 0 means the first example, or the example in the first row in the training data

In [11]: #Now testing three dimensional problems

In [12]: tdata = np.array([ [1, -5, 1], [3, 5, 0], [-5, -6, -7] ])

In [13]: hw.find_closest_example(tdata, np.array([-2, -4,-8]) )

Out[13]: 2

In [14]: # Now testing the calculate_centroid_pos function

In [15]: mydata = np.array( [ [1, 2], [3, 4], [5, 6] ])

In [16]: hw.calculate_centroid_pos(mydata)

Out[16]: array([3., 4.])

In [17]: # Now testing higher dimensions

In [18]: mydata = np.array([ [ 1, 2, 3], [4, 5, 6], [7, 8, 9] ])

In [19]: hw.calculate_centroid_pos(mydata)

Out[19]: array([4., 5., 6.])

In [20]: # Now simulating perceptron classification (using examples from our lecture slides)

In [21]: w = np.array([-5, 1, 1])

In [22]: x = np.array([ [ 1, 5] ])

In [23]: hw.classify_examples(w, x)

Out[23]: array([1.])

In [24]: x = np.array([ [1, 3] ])

In [25]: hw.classify_examples(w, x)

Out[25]: array([-1.])

In [26]: x = np.array([ [1, 1] ])

In [27]: hw.classify_examples(w, x)

Out[27]: array([-1.])

In [28]: x = np.array([ [4, 3] ])

In [29]: hw.classify_examples(w, x)

Out[29]: array([1.])

In [30]: # Now we pass them as a batch 2D numpy array

In [31]: x = np.array([ [1,5], [1, 3], [1, 1], [4, 3] ])

In [32]: hw.classify_examples(w, x)

Out[32]: array([ 1., -1., -1., 1.])

In [33]: # Good luck! 🙂

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
“””
CMPE 471 – CMPS 497
Homework 2
DUE: 21/2/2021 at 11:59pm (Sunday midnight)

Q1: What is your name?
Q2: What is your QUID?
Q3: (4 pts)
Name two advantages and two disadvantages of KNN when it is compared to
Decision Trees:
A3:

Q4: (5 pts)
Identify which of the classifiers learned so far (KNN, DT, or Perceptron)
will not be suitable for the 2-D binary classification problem described by
the data inside the file dataset.csv. In your own words, justify why you choose
the classifier in your answer.
Hint: Use scatter with two different colors for positive and negative examples
A4:

Fill in the body of the functions below following their descriptions
“””

def find_closest_example(data, test_example):
“””
(5 pts)
Using the euclidean distance, this function finds the position of the closest
example in the “data” parameter to “test_example”. So, if the closest example
is the third one inside data, then it returns 2. If it is the fifth example,
it returns the number 4…etc

Parameters:
———-
data: 2-D numpy array continuous data in N x M dimensions
test_example: 1-D array with with M values for a test example

Returns:
———-
The “index” of the closest example (one integer).
“””
return None

def calculate_centroid_pos(data):
“””
(5 pts)
function receives a 2D numpy array “data” (N x M dimensions) and calculates
the new “updated” centroid position for these data
Note: assume all the the examples given in “data” belong to one cluster

function should return a numpy array with 1xM dimensions (centroid position).

Parameters:
———-
data: 2D numpy array (N x M dim) with continuous numerical values.

Returns:
———
The numpy array with 1xM dimensions of the centroid: one centroid position in M dimensions.
“””

return None

def classify_examples(weights, test_examples):
“””
(5 pts)
This function classifies examples using the perceptron algorithm.
To do that, it receives one single dimensional numpy array weights, and 2D numpy array
(test_examples) then returns a 1D numpy array with the classification results for each example
(1 is positive, and -1 if it is a negative).

Parameters:
———-
weights: 1-D numpy array with the perceptron weights and bias (bias is in position 0)
test_examples: 2-D numpy array with the feature-values of the test examples.

Note: the width (number of columns) of test_examples should be length of weights – 1.
Note: assume weights and the features vectors follow the same order:
e.g. w0, w1, w2, w3…
x1, x2, x3…

Returns:
———-
1D numpy array with the classification results of the test_examples: (each is either 1, or -1).
“””

return None
# BELOW IS “EXTRA PRACTICE” (FOR FUN ONLY AND NOT GRADED)

def kmeans_cluster(data, k_init_centroids):
“””
(extra practice)
Can you combine the two parts above to create the K-Means algorithm? This is where you can try it.
Use the above two methods (find_closest_example, calculate_centroid_pos) to implement the K-Means algorithm.
It should terminate either when no examples move across clusters, or if the number of iterations reaches 10.

Parameters:
———-
data: 2-d numpy array of the data to be clustered (data can be more than 2 features)
k_init_centroids: 2d numpy array containing the initial centroid positions (number of rows should determine “K”).

Returns:
———-
the final centroid positions (should be the same length and dimension as the k_initial_centroids)
“””
return None

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP