annotated bibliography for below articles In apa no specific word count

  

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

References

Jiang, C., Song, J., Liu, G., Zheng, L., & Luan, W. (2018). Credit card fraud detection: A novel approach using aggregation strategy and feedback mechanism. IEEE Internet of Things Journal, 5(5), 3637-3647.

Li, Z., Liu, G., & Jiang, C. (2020). Deep representation learning with full center loss for credit card fraud detection. IEEE Transactions on Computational Social Systems, 7(2), 569-579.

Tingfei, H., Guangquan, C., & Kuihua, H. (2020). Using Variational Auto Encoding in Credit Card Fraud Detection. IEEE Access, 8, 149841-149853.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Zheng, L., Liu, G., Yan, C., & Jiang, C. (2018). Transaction fraud detection based on total order relation and behavior diversity. IEEE Transactions on Computational Social Systems, 5(3), 796-806.

Zhang, Z., Chen, L., Liu, Q., & Wang, P. (2020). A Fraud Detection Method for Low-Frequency Transaction. IEEE Access, 8, 25210-25220.

Zanetti, M., Jamhour, E., Pellenz, M., Penna, M., Zambenedetti, V., & Chueiri, I. (2017). A tunable fraud detection system for advanced metering infrastructure using short-lived patterns. IEEE Transactions on Smart grid, 10(1), 830-840.

Huang, D., Mu, D., Yang, L., & Cai, X. (2018). CoDetect: Financial fraud detection with anomaly feature detection. IEEE Access, 6, 19161-19174.

Omair, B., & Alturki, A. (2020). A Systematic Literature Review of Fraud Detection Metrics in Business Processes. IEEE Access, 8, 26893-26903.

Zhu, Bing & Yang, Wenchuan & Wang, Huaxuan & Yuan, Yuan. (2018). A hybrid deep learning model for consumer credit scoring. 205-208. 10.1109/ICAIBD.2018.8396195.

Nie, G., Wei, R., Zhang, L., Tian, Y., and Shi, Y., 2011. Credit card churn forecasting by logistic regression and decision tree. Expert Systems with Applications 38, 12, 15273-15285. 

Cecotti, Hubert & Rivera, Agustin & Farhadloo, Majid & Villarreal, Miguel. (2020). Grape detection with Convolutional Neural Networks. Expert Systems with Applications. 159. 113588. 10.1016/j.eswa.2020.113588.

Yifei, R. A. O. (2016). Big Data Algorithm Applied to Credit Risk Assessment Model. International Journal of Simulation–Systems, Science & Technology, 17(42).

Sarigul, Mehmet & Ozyildirim, B.M. & Avci, Mutlu. (2019). Differential convolutional neural network. Neural Networks. 116. 10.1016/j.neunet.2019.04.025.

Zhou, F.-Y & Jin, Linpeng & Dong, Jianfang. (2017). Review of Convolutional Neural Network. Jisuanji Xuebao/Chinese Journal of Computers. 40. 1229-1251. 10.11897/SP.J.1016.2017.01229. 

Dawood, E. A. E., Elfakhrany, E., & Maghraby, F. A. (2019). Improve Profiling Bank Customer’s Behavior Using Machine Learning. IEEE Access, 7, 109320-109327.

Kvamme, Håvard & Sellereite, Nikolai & Aas, Kjersti & Sjursen, Steffen. (2018). Predicting Mortgage Default using Convolutional Neural Networks. Expert Systems with Applications. 102. 10.1016/j.eswa.2018.02.029.

Zhou, X., Zhang, W., & Jiang, Y. (2020). Personal Credit Default Prediction Model Based on Convolution Neural Network. Mathematical Problems in Engineering, 2020.

Yu, Z. Y., & Zhao, S. F. (2011, December). Bank credit risk management early warning and decision-making based on BP neural networks. In 2011 IEEE International Symposium on IT in Medicine and Education (Vol. 2, pp. 528-532). IEEE.

Cheng, D., Xiang, S., Shang, C., Zhang, Y., Yang, F., & Zhang, L. (2020, April). Spatio-Temporal Attention-Based Neural Network for Credit Card Fraud Detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 01, pp. 362-369).

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP