Trees and Tags

Complete a program that is designed to read an XMl file, follow an XPath to a selected node, and then list all of the text content (ignoring attributes) in the subtree rooted at the selected node, in the order that the text appeared within the original XML file.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

You will be provided with the bulk of the code for this program, including the input processing to read XML and convert it into a tree structure (declared in node.h).

Your task is to supply the functions declared in extraction.h:

  1. A function to walk the tree starting from its root, following an XPath to a desired node.
  2. A function to extract all of the text (in the leaves of the tree) in the tree, combining it into a single string with one or more blanks separating the text strings from different nodes.

Your bodies for these functions should be written in extraction.cpp.

To run the application program, supply two command line parameters. The first will designate an XML file and the second will be the XPath to the desired node.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Example 1

./xmlextract test0.html /html/body

will print

Hello world!

Example 2

./xmlextract test1.html /html/body/p[2]

will print
world!

Example 3

./xmlextract books1.xml /rdf:RDF/pgterms:etext/dc:creator
will print
Twain, Mark, 1835-1910

Example 4

./xmlextract books1.xml /rdf:RDF/pgterms:etext[3]
will print
&pg; A History of the Early Part of the Reign of James the Second Fox, Charles
James, 1749-1806 Morley, Henry, 1822-1894 [Editor] A History of the Early Part
of the Reign of James en Great Britain — History — James II, 1685-1688 DA
2003-07-01 17

Please only submit new extraction.cpp file with the bodies fot the two missing functions!

FlexLexer.h
// -*-C++-*-
// FlexLexer.h — define interfaces for lexical analyzer classes generated
// by flex
// Copyright (c) 1993 The Regents of the University of California.
// All rights reserved.
//
// This code is derived from software contributed to Berkeley by
// Kent Williams and Tom Epperly.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// Neither the name of the University nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE.
// This file defines FlexLexer, an abstract class which specifies the
// external interface provided to flex C++ lexer objects, and yyFlexLexer,
// which defines a particular lexer class.
//
// If you want to create multiple lexer classes, you use the -P flag
// to rename each yyFlexLexer to some other xxFlexLexer. You then
// include in your other sources once per lexer class:
//
// #undef yyFlexLexer
// #define yyFlexLexer xxFlexLexer
// #include
//
// #undef yyFlexLexer
// #define yyFlexLexer zzFlexLexer
// #include
// …
#ifndef __FLEX_LEXER_H
// Never included before – need to define base class.
#define __FLEX_LEXER_H
#include
extern “C++” {
struct yy_buffer_state;
typedef int yy_state_type;
class FlexLexer
{
public:
virtual ~FlexLexer() { }
const char* YYText() const { return yytext; }
int YYLeng() const { return yyleng; }
virtual void
yy_switch_to_buffer( yy_buffer_state* new_buffer ) = 0;
virtual yy_buffer_state* yy_create_buffer( std::istream* s, int size ) = 0;
virtual yy_buffer_state* yy_create_buffer( std::istream& s, int size ) = 0;
virtual void yy_delete_buffer( yy_buffer_state* b ) = 0;
virtual void yyrestart( std::istream* s ) = 0;
virtual void yyrestart( std::istream& s ) = 0;
virtual int yylex() = 0;
// Call yylex with new input/output sources.
int yylex( std::istream& new_in, std::ostream& new_out )
{
switch_streams( new_in, new_out );
return yylex();
}
int yylex( std::istream* new_in, std::ostream* new_out = 0)
{
switch_streams( new_in, new_out );
return yylex();
}
// Switch to new input/output streams. A nil stream pointer
// indicates “keep the current one”.
virtual void switch_streams( std::istream* new_in,
std::ostream* new_out ) = 0;
virtual void switch_streams( std::istream& new_in,
std::ostream& new_out ) = 0;
int lineno() const { return yylineno; }
int debug() const { return yy_flex_debug; }
void set_debug( int flag ) { yy_flex_debug = flag; }
protected:
char* yytext;
int yyleng;
int yylineno; // only maintained if you use %option yylineno
int yy_flex_debug; // only has effect with -d or “%option debug”
};
}
#endif // FLEXLEXER_H
#if defined(yyFlexLexer) || ! defined(yyFlexLexerOnce)
// Either this is the first time through (yyFlexLexerOnce not defined),
// or this is a repeated include to define a different flavor of
// yyFlexLexer, as discussed in the flex manual.
# define yyFlexLexerOnce
extern “C++” {
class yyFlexLexer : public FlexLexer {
public:
// arg_yyin and arg_yyout default to the cin and cout, but we
// only make that assignment when initializing in yylex().
yyFlexLexer( std::istream& arg_yyin, std::ostream& arg_yyout );
yyFlexLexer( std::istream* arg_yyin = 0, std::ostream* arg_yyout = 0 );
private:
void ctor_common();
public:
virtual ~yyFlexLexer();
void yy_switch_to_buffer( yy_buffer_state* new_buffer );
yy_buffer_state* yy_create_buffer( std::istream* s, int size );
yy_buffer_state* yy_create_buffer( std::istream& s, int size );
void yy_delete_buffer( yy_buffer_state* b );
void yyrestart( std::istream* s );
void yyrestart( std::istream& s );
void yypush_buffer_state( yy_buffer_state* new_buffer );
void yypop_buffer_state();
virtual int yylex();
virtual void switch_streams( std::istream& new_in, std::ostream& new_out );
virtual void switch_streams( std::istream* new_in = 0, std::ostream* new_out = 0 );
virtual int yywrap();
protected:
virtual int LexerInput( char* buf, int max_size );
virtual void LexerOutput( const char* buf, int size );
virtual void LexerError( const char* msg );
void yyunput( int c, char* buf_ptr );
int yyinput();
void yy_load_buffer_state();
void yy_init_buffer( yy_buffer_state* b, std::istream& s );
void yy_flush_buffer( yy_buffer_state* b );
int yy_start_stack_ptr;
int yy_start_stack_depth;
int* yy_start_stack;
void yy_push_state( int new_state );
void yy_pop_state();
int yy_top_state();
yy_state_type yy_get_previous_state();
yy_state_type yy_try_NUL_trans( yy_state_type current_state );
int yy_get_next_buffer();
std::istream yyin; // input source for default LexerInput
std::ostream yyout; // output sink for default LexerOutput
// yy_hold_char holds the character lost when yytext is formed.
char yy_hold_char;
// Number of characters read into yy_ch_buf.
int yy_n_chars;
// Points to current character in buffer.
char* yy_c_buf_p;
int yy_init; // whether we need to initialize
int yy_start; // start state number
// Flag which is used to allow yywrap()’s to do buffer switches
// instead of setting up a fresh yyin. A bit of a hack …
int yy_did_buffer_switch_on_eof;

size_t yy_buffer_stack_top; /**< index of top of stack. */ size_t yy_buffer_stack_max; /**< capacity of stack. */ yy_buffer_state ** yy_buffer_stack; /**< Stack as an array. */ void yyensure_buffer_stack(void); // The following are not always needed, but may be depending // on use of certain flex features (like REJECT or yymore()). yy_state_type yy_last_accepting_state; char* yy_last_accepting_cpos; yy_state_type* yy_state_buf; yy_state_type* yy_state_ptr; char* yy_full_match; int* yy_full_state; int yy_full_lp; int yy_lp; int yy_looking_for_trail_begin; int yy_more_flag; int yy_more_len; int yy_more_offset; int yy_prev_more_offset; }; } #endif // yyFlexLexer || ! yyFlexLexerOnce bin/Linux/xmlextract books1.xml 2014-04-15 Project Gutenberg Roughing It Twain, Mark, 1835-1910 Roughing It by Mark Twain en Authors, American -- Homes and haunts -- West (U.S.) Twain, Mark, 1835-1910 -- Travel -- West (U.S.) West (U.S.) -- Intellectual life -- 19th century West (U.S.) -- Description and travel PS E660 2004-07-03 3926 Project Gutenberg Queen Victoria, her girlhood and womanhood Greenwood, Grace, 1823-1904 Queen Victoria, her girlhood and womanhood en Victoria, Queen of Great Britain, 1819-1901 DA 2004-09-01 23 Project Gutenberg A History of the Early Part of the Reign of James the Second Fox, Charles James, 1749-1806 Morley, Henry, 1822-1894 [Editor] A History of the Early Part of the Reign of James en Great Britain -- History -- James II, 1685-1688 DA 2003-07-01 17 Project Gutenberg A History of the Four Georges, Volume I McCarthy, Justin, 1830-1912 A History of the Four Georges, Volume I en Great Britain -- Politics and government -- 1714-1837 Great Britain -- History -- 1714-1837 DA 2007-11-13 3 extraction.cpp #include "extraction.h" #include
#include
#include
using namespace std;
/**
* Examine an xpath step of the form “/tagName[k]” and pull out the tagname
* and index. The index part may be omitted, in which case it is assumed to
* be 1.
*
* @param xpathStep the string containing one step in an xpath.
* @param tagName the tag name that must be matched in the step (output)
* @param index the index of the desired child with that tagName (output)
*/
void interpretXPathStep(string xpathStep, string &tagName, unsigned &index)
{
index = 1;
tagName = xpathStep;
if (tagName.size() > 0 && tagName[0] == ‘/’)
tagName = tagName.substr(1); // discard the ‘/’
string::size_type indexStart = xpathStep.find(‘[‘);
if (indexStart != string::npos)
{
string::size_type indexStop = xpathStep.find(‘]’);
index = stoi(xpathStep.substr(indexStart+1, indexStop – indexStart – 1));
tagName = tagName.substr(0, indexStart);
}
}
/**
* Find a node in an XML tree usign a subset of XPATH:
* /tag1[k1]/tag2[k2]/…/tagn[kn]
* Each tagi is an XML tag name. The [ki] give an integer index indicating
* which child with the given tag name should be selected. The “[ki]” portion
* may be omitted when ki==1.
*
* @param root the root of the tree from which the selection should be made
* @param xpath the path to follow in selectign the desired node.
* @return the desired node from within the tree, or nullptr if no node matching
* the given path can be found.
*/
Node *selectByPath(Node *root, std::string xpath)
{
//*** To be implemented
return nullptr;
}
/**
* Given an XML (sub)tree, extract and concatenate the text leaves from
* that tree in the order they would be encountered in an XML listing,
* separating text from different leaf nodes by one or more blanks.
*
* @param tree the root of the tree from which the text is to be extracted.
*/
std::string extractText(const Node *tree)
{
//*** To be implemented
return “”;
}

extraction.h
#ifndef EXTRACTION_H
#define EXTRACTION_H
#include
#include “node.h”
/**
* Find a node in an XML tree usign a subset of XPATH:
* /tag1[k1]/tag2[k2]/…/tagn[kn]
* Each tagi is an XML tag name. The [ki] give an integer index indicating
* which child with the given tag name should be selected. The “[ki]” portion
* may be omitted when ki==1.
*
* @param root the root of the tree from which the selection should be made
* @param xpath the path to follow in selectign the desired node.
* @return the desired node from within the tree, or nullptr if no node matching
* the given path can be found.
*/
Node* selectByPath (Node* root, std::string xpath);
/**
* Given an XML (sub)tree, extract and concatenate the text leaves from
* that tree in the order they would be encountered in an XML listing,
* separating text from different leaf nodes by one or more blanks.
*
* @param tree the root of the tree from which the text is to be extracted.
*/
std::string extractText(const Node* tree);
#endif

lex.yy.cpp
lex.yy.cpp
#line
 
2
 
“lex.yy.cpp”

#line
 
4
 
“lex.yy.cpp”

#define
  YY_INT_ALIGNED 
short
 
int

/* A lexical scanner generated by flex */

#define
 FLEX_SCANNER

#define
 YY_FLEX_MAJOR_VERSION 
2

#define
 YY_FLEX_MINOR_VERSION 
6

#define
 YY_FLEX_SUBMINOR_VERSION 
4

#if
 YY_FLEX_SUBMINOR_VERSION 
>
 
0

#define
 FLEX_BETA

#endif

    
/* The c++ scanner is a mess. The FlexLexer.h header file relies on the

     * following macro. This is required in order to pass the c++-multiple-scanners

     * test in the regression suite. We get reports that it breaks inheritance.

     * We will address this in a future release of flex, or omit the C++ scanner

     * altogether.

     */

    
#define
 yyFlexLexer yyFlexLexer

/* First, we deal with  platform-specific or compiler-specific issues. */

/* begin standard C headers. */

/* end standard C headers. */

/* flex integer type definitions */

#ifndef
 FLEXINT_H

#define
 FLEXINT_H

/* C99 systems have . Non-C99 systems may or may not. */

#if
 defined 
(
__STDC_VERSION__
)
 
&&
 __STDC_VERSION__ 
>=
 
199901L

/* C99 says to define __STDC_LIMIT_MACROS before including stdint.h,

 * if you want the limit (max/min) macros for int types. 

 */

#ifndef
 __STDC_LIMIT_MACROS

#define
 __STDC_LIMIT_MACROS 
1

#endif

#include
 
< inttypes . h >

typedef
 int8_t flex_int8_t
;

typedef
 uint8_t flex_uint8_t
;

typedef
 int16_t flex_int16_t
;

typedef
 uint16_t flex_uint16_t
;

typedef
 int32_t flex_int32_t
;

typedef
 uint32_t flex_uint32_t
;

#else

typedef
 
signed
 
char
 flex_int8_t
;

typedef
 
short
 
int
 flex_int16_t
;

typedef
 
int
 flex_int32_t
;

typedef
 
unsigned
 
char
 flex_uint8_t
;
 

typedef
 
unsigned
 
short
 
int
 flex_uint16_t
;

typedef
 
unsigned
 
int
 flex_uint32_t
;

/* Limits of integral types. */

#ifndef
 INT8_MIN

#define
 INT8_MIN               
(

128
)

#endif

#ifndef
 INT16_MIN

#define
 INT16_MIN              
(

32767

1
)

#endif

#ifndef
 INT32_MIN

#define
 INT32_MIN              
(

2147483647

1
)

#endif

#ifndef
 INT8_MAX

#define
 INT8_MAX               
(
127
)

#endif

#ifndef
 INT16_MAX

#define
 INT16_MAX              
(
32767
)

#endif

#ifndef
 INT32_MAX

#define
 INT32_MAX              
(
2147483647
)

#endif

#ifndef
 UINT8_MAX

#define
 UINT8_MAX              
(
255U
)

#endif

#ifndef
 UINT16_MAX

#define
 UINT16_MAX             
(
65535U
)

#endif

#ifndef
 UINT32_MAX

#define
 UINT32_MAX             
(
4294967295U
)

#endif

#ifndef
 SIZE_MAX

#define
 SIZE_MAX               
(
~
(
size_t
)
0
)

#endif

#endif
 
/* ! C99 */

#endif
 
/* ! FLEXINT_H */

/* begin standard C++ headers. */

#include
 
< iostream >

#include
 
< errno . h >

#include
 
< cstdlib >

#include
 
< cstdio >

#include
 
< cstring >

/* end standard C++ headers. */

/* TODO: this is always defined, so inline it */

#define
 yyconst 
const

#if
 defined
(
__GNUC__
)
 
&&
 __GNUC__ 
>=
 
3

#define
 yynoreturn __attribute__
((
__noreturn__
))

#else

#define
 yynoreturn

#endif

/* Returned upon end-of-file. */

#define
 YY_NULL 
0

/* Promotes a possibly negative, possibly signed char to an

 *   integer in range [0..255] for use as an array index.

 */

#define
 YY_SC_TO_UI
(
c
)
 
((
YY_CHAR
)
 
(
c
))

/* Enter a start condition.  This macro really ought to take a parameter,

 * but we do it the disgusting crufty way forced on us by the ()-less

 * definition of BEGIN.

 */

#define
 BEGIN 
(
yy_start
)
 
=
 
1
 
+
 
2
 
*

/* Translate the current start state into a value that can be later handed

 * to BEGIN to return to the state.  The YYSTATE alias is for lex

 * compatibility.

 */

#define
 YY_START 
(((
yy_start
)
 

 
1
)
 
/
 
2
)

#define
 YYSTATE YY_START

/* Action number for EOF rule of a given start state. */

#define
 YY_STATE_EOF
(
state
)
 
(
YY_END_OF_BUFFER 
+
 state 
+
 
1
)

/* Special action meaning “start processing a new file”. */

#define
 YY_NEW_FILE yyrestart
(
 yyin  
)

#define
 YY_END_OF_BUFFER_CHAR 
0

/* Size of default input buffer. */

#ifndef
 YY_BUF_SIZE

#ifdef
 __ia64__

/* On IA-64, the buffer size is 16k, not 8k.

 * Moreover, YY_BUF_SIZE is 2*YY_READ_BUF_SIZE in the general case.

 * Ditto for the __ia64__ case accordingly.

 */

#define
 YY_BUF_SIZE 
32768

#else

#define
 YY_BUF_SIZE 
16384

#endif
 
/* __ia64__ */

#endif

/* The state buf must be large enough to hold one state per character in the main buffer.

 */

#define
 YY_STATE_BUF_SIZE   
((
YY_BUF_SIZE 
+
 
2
)
 
*
 
sizeof
(
yy_state_type
))

#ifndef
 YY_TYPEDEF_YY_BUFFER_STATE

#define
 YY_TYPEDEF_YY_BUFFER_STATE

typedef
 
struct
 yy_buffer_state 
*
YY_BUFFER_STATE
;

#endif

#ifndef
 YY_TYPEDEF_YY_SIZE_T

#define
 YY_TYPEDEF_YY_SIZE_T

typedef
 size_t yy_size_t
;

#endif

extern
 
int
 yyleng
;

#define
 EOB_ACT_CONTINUE_SCAN 
0

#define
 EOB_ACT_END_OF_FILE 
1

#define
 EOB_ACT_LAST_MATCH 
2

    

    
#define
 YY_LESS_LINENO
(
n
)

    
#define
 YY_LINENO_REWIND_TO
(
ptr
)

    

/* Return all but the first “n” matched characters back to the input stream. */

#define
 yyless
(
n
)
 \

    
do
 \

        
{
 \

        
/* Undo effects of setting up yytext. */
 \

        
int
 yyless_macro_arg 
=
 
(
n
);
 \

        YY_LESS_LINENO
(
yyless_macro_arg
);
\

        
*
yy_cp 
=
 
(
yy_hold_char
);
 \

        YY_RESTORE_YY_MORE_OFFSET \

        
(
yy_c_buf_p
)
 
=
 yy_cp 
=
 yy_bp 
+
 yyless_macro_arg 

 YY_MORE_ADJ
;
 \

        YY_DO_BEFORE_ACTION
;
 
/* set up yytext again */
 \

        
}
 \

    
while
 
(
 
0
 
)

#define
 unput
(
c
)
 yyunput
(
 c
,
 
(
yytext_ptr
)
  
)

#ifndef
 YY_STRUCT_YY_BUFFER_STATE

#define
 YY_STRUCT_YY_BUFFER_STATE

struct
 yy_buffer_state

    
{

    std
::
streambuf
*
 yy_input_file
;

    
char
 
*
yy_ch_buf
;
        
/* input buffer */

    
char
 
*
yy_buf_pos
;
       
/* current position in input buffer */

    
/* Size of input buffer in bytes, not including room for EOB

     * characters.

     */

    
int
 yy_buf_size
;

    
/* Number of characters read into yy_ch_buf, not including EOB

     * characters.

     */

    
int
 yy_n_chars
;

    
/* Whether we “own” the buffer – i.e., we know we created it,

     * and can realloc() it to grow it, and should free() it to

     * delete it.

     */

    
int
 yy_is_our_buffer
;

    
/* Whether this is an “interactive” input source; if so, and

     * if we’re using stdio for input, then we want to use getc()

     * instead of fread(), to make sure we stop fetching input after

     * each newline.

     */

    
int
 yy_is_interactive
;

    
/* Whether we’re considered to be at the beginning of a line.

     * If so, ‘^’ rules will be active on the next match, otherwise

     * not.

     */

    
int
 yy_at_bol
;

    
int
 yy_bs_lineno
;
 
/**< The line count. */      int  yy_bs_column ;   /**< The column count. */      /* Whether to try to fill the input buffer when we reach the      * end of it.      */      int  yy_fill_buffer ;      int  yy_buffer_status ; #define  YY_BUFFER_NEW  0 #define  YY_BUFFER_NORMAL  1      /* When an EOF's been seen but there's still some text to process      * then we mark the buffer as YY_EOF_PENDING, to indicate that we      * shouldn't try reading from the input source any more.  We might      * still have a bunch of tokens to match, though, because of      * possible backing-up.      *      * When we actually see the EOF, we change the status to "new"      * (via yyrestart()), so that the user can continue scanning by      * just pointing yyin at a new input file.      */ #define  YY_BUFFER_EOF_PENDING  2      }; #endif   /* !YY_STRUCT_YY_BUFFER_STATE */ /* We provide macros for accessing buffer states in case in the  * future we want to put the buffer states in a more general  * "scanner state".  *  * Returns the top of the stack, or NULL.  */ #define  YY_CURRENT_BUFFER  (   ( yy_buffer_stack )  \                            ?   ( yy_buffer_stack )[( yy_buffer_stack_top )]  \                            :  NULL ) /* Same as previous macro, but useful when we know that the buffer stack is not  * NULL or when we need an lvalue. For internal use only.  */ #define  YY_CURRENT_BUFFER_LVALUE  ( yy_buffer_stack )[( yy_buffer_stack_top )] void   * yyalloc  (  yy_size_t   ); void   * yyrealloc  (   void   * ,  yy_size_t   ); void  yyfree  (   void   *    ); #define  yy_new_buffer yy_create_buffer #define  yy_set_interactive ( is_interactive )  \      {  \      if   (   !  YY_CURRENT_BUFFER  ){  \         yyensure_buffer_stack  ();  \         YY_CURRENT_BUFFER_LVALUE  =     \             yy_create_buffer (  yyin ,  YY_BUF_SIZE  );  \      }  \     YY_CURRENT_BUFFER_LVALUE ->
yy_is_interactive 
=
 is_interactive
;
 \

    
}

#define
 yy_set_bol
(
at_bol
)
 \

    
{
 \

    
if
 
(
 
!
 YY_CURRENT_BUFFER 
){
\

        yyensure_buffer_stack 
();
 \

        YY_CURRENT_BUFFER_LVALUE 
=
    \

            yy_create_buffer
(
 yyin
,
 YY_BUF_SIZE 
);
 \

    
}
 \

    YY_CURRENT_BUFFER_LVALUE
->
yy_at_bol 
=
 at_bol
;
 \

    
}

#define
 YY_AT_BOL
()
 
(
YY_CURRENT_BUFFER_LVALUE
->
yy_at_bol
)

/* Begin user sect3 */

#define
 YY_SKIP_YYWRAP

typedef
 flex_uint8_t YY_CHAR
;

#define
 yytext_ptr yytext

#define
 YY_INTERACTIVE

#include
 
“FlexLexer.h”

int
 yyFlexLexer
::
yywrap
()
 
{
 
return
 
1
;
 
}

/* Done after the current pattern has been matched and before the

 * corresponding action – sets up yytext.

 */

#define
 YY_DO_BEFORE_ACTION \

    
(
yytext_ptr
)
 
=
 yy_bp
;
 \

    yyleng 
=
 
(
int
)
 
(
yy_cp 

 yy_bp
);
 \

    
(
yy_hold_char
)
 
=
 
*
yy_cp
;
 \

    
*
yy_cp 
=
 
‘\0’
;
 \

    
(
yy_c_buf_p
)
 
=
 yy_cp
;

#define
 YY_NUM_RULES 
10

#define
 YY_END_OF_BUFFER 
11

/* This struct is not used in this scanner,

   but its presence is necessary. */

struct
 yy_trans_info

    
{

    flex_int32_t yy_verify
;

    flex_int32_t yy_nxt
;

    
};

static
 
const
 flex_int16_t yy_accept
[
34
]
 
=

    
{
   
0
,

        
0
,
    
0
,
    
0
,
    
0
,
    
0
,
    
0
,
   
11
,
    
6
,
    
1
,
    
1
,

        
9
,
    
9
,
    
7
,
   
10
,
    
7
,
    
6
,
    
6
,
    
1
,
    
0
,
    
0
,

        
0
,
    
0
,
    
0
,
    
0
,
    
0
,
    
0
,
    
3
,
    
8
,
    
2
,
    
0
,

        
0
,
    
5
,
    
0

    
}
 
;

static
 
const
 YY_CHAR yy_ec
[
256
]
 
=

    
{
   
0
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
2
,
    
3
,

        
1
,
    
1
,
    
2
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
2
,
    
4
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
5
,
    
1
,
    
6
,
    
7
,
    
7
,
    
7
,

        
7
,
    
7
,
    
7
,
    
7
,
    
7
,
    
7
,
    
7
,
    
7
,
    
1
,
    
8
,

        
1
,
    
9
,
    
1
,
    
1
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,

       
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,

       
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
   
10
,
   
10
,
   
10
,
   
10
,

       
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,

       
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,
   
10
,

       
10
,
   
10
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1

    
}
 
;

static
 
const
 YY_CHAR yy_meta
[
11
]
 
=

    
{
   
0
,

        
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
1
,
    
2
,
    
3
,
    
3
,
    
2

    
}
 
;

static
 
const
 flex_int16_t yy_base
[
41
]
 
=

    
{
   
0
,

        
0
,
    
8
,
   
15
,
   
18
,
    
0
,
    
0
,
   
29
,
   
22
,
   
24
,
    
0
,

       
24
,
   
70
,
   
70
,
   
70
,
   
17
,
   
33
,
    
0
,
    
0
,
   
14
,
    
0
,

       
30
,
    
6
,
    
9
,
   
34
,
    
4
,
   
38
,
   
70
,
   
70
,
   
70
,
    
3
,

       
42
,
   
70
,
   
70
,
   
52
,
   
55
,
   
58
,
   
61
,
    
2
,
   
63
,
   
66

    
}
 
;

static
 
const
 flex_int16_t yy_def
[
41
]
 
=

    
{
   
0
,

       
34
,
   
34
,
   
35
,
   
35
,
   
36
,
   
36
,
   
33
,
   
37
,
   
37
,
    
9
,

       
33
,
   
33
,
   
33
,
   
33
,
   
33
,
    
9
,
   
16
,
    
9
,
   
33
,
   
38
,

       
39
,
   
33
,
   
33
,
   
40
,
   
39
,
   
39
,
   
33
,
   
33
,
   
33
,
   
40
,

       
40
,
   
33
,
    
0
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33

    
}
 
;

static
 
const
 flex_int16_t yy_nxt
[
81
]
 
=

    
{
   
0
,

       
33
,
    
9
,
   
10
,
   
24
,
   
33
,
   
33
,
   
33
,
   
11
,
   
12
,
    
9
,

       
10
,
   
32
,
   
27
,
   
29
,
   
28
,
   
11
,
   
12
,
   
14
,
   
23
,
   
15
,

       
14
,
   
22
,
   
15
,
   
17
,
   
17
,
   
18
,
   
18
,
   
19
,
   
33
,
   
20
,

       
33
,
   
33
,
   
33
,
   
21
,
   
17
,
   
17
,
   
26
,
   
33
,
   
27
,
   
26
,

       
31
,
   
33
,
   
32
,
   
31
,
   
26
,
   
33
,
   
27
,
   
26
,
   
31
,
   
33
,

       
32
,
   
31
,
    
8
,
    
8
,
    
8
,
   
13
,
   
13
,
   
13
,
   
14
,
   
14
,

       
14
,
   
16
,
   
16
,
   
25
,
   
25
,
   
25
,
   
30
,
   
30
,
   
30
,
    
7
,

       
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33

    
}
 
;

static
 
const
 flex_int16_t yy_chk
[
81
]
 
=

    
{
   
0
,

        
0
,
    
1
,
    
1
,
   
38
,
    
0
,
    
0
,
    
0
,
    
1
,
    
1
,
    
2
,

        
2
,
   
30
,
   
25
,
   
23
,
   
22
,
    
2
,
    
2
,
    
3
,
   
19
,
    
3
,

        
4
,
   
15
,
    
4
,
    
8
,
    
8
,
    
9
,
    
9
,
   
11
,
    
7
,
   
11
,

        
0
,
    
0
,
    
0
,
   
11
,
   
16
,
   
16
,
   
21
,
    
0
,
   
21
,
   
21
,

       
24
,
    
0
,
   
24
,
   
24
,
   
26
,
    
0
,
   
26
,
   
26
,
   
31
,
    
0
,

       
31
,
   
31
,
   
34
,
   
34
,
   
34
,
   
35
,
   
35
,
   
35
,
   
36
,
   
36
,

       
36
,
   
37
,
   
37
,
   
39
,
   
39
,
   
39
,
   
40
,
   
40
,
   
40
,
   
33
,

       
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33
,
   
33

    
}
 
;

/* The intent behind this definition is that it’ll catch

 * any uses of REJECT which flex missed.

 */

#define
 REJECT reject_used_but_not_detected

#define
 yymore
()
 yymore_used_but_not_detected

#define
 YY_MORE_ADJ 
0

#define
 YY_RESTORE_YY_MORE_OFFSET

#line
 
1
 
“scanner.l”

#line
 
4
 
“scanner.l”

#include
 
< fstream >

#include
 
“scanner.h”

using
 
namespace
 std
;

  
int
 savedState
,
 hrefMode
;

  std
::
string lexeme
;

 

#undef
 ECHO 

//#define ECHO cerr << yytext << flush; #define  ECHO #undef  LEXEME #define  LEXEME lexeme  =  yytext ;   int  yy_more_offset ,  yy_prev_more_offset ; #line   442   "lex.yy.cpp" /* regular definitions */ #line   445   "lex.yy.cpp" #define  INITIAL  0 #define  INCOMMENT  1 #define  HTMLTAG  2 #ifndef  YY_NO_UNISTD_H /* Special case for "unistd.h", since it is non-ANSI. We include it way  * down here because we want the user's section 1 to have been scanned first.  * The user has a chance to override it with an option.  */ #include   < unistd . h >

#endif

#ifndef
 YY_EXTRA_TYPE

#define
 YY_EXTRA_TYPE 
void
 
*

#endif

#ifndef
 yytext_ptr

static
 
void
 yy_flex_strncpy 
(
 
char
 
*
,
 
const
 
char
 
*
,
 
int
 
);

#endif

#ifdef
 YY_NEED_STRLEN

static
 
int
 yy_flex_strlen 
(
 
const
 
char
 
*
 
);

#endif

#ifndef
 YY_NO_INPUT

#endif

/* Amount of stuff to slurp up with each read. */

#ifndef
 YY_READ_BUF_SIZE

#ifdef
 __ia64__

/* On IA-64, the buffer size is 16k, not 8k */

#define
 YY_READ_BUF_SIZE 
16384

#else

#define
 YY_READ_BUF_SIZE 
8192

#endif
 
/* __ia64__ */

#endif

/* Copy whatever the last rule matched to the standard output. */

#ifndef
 ECHO

#define
 ECHO 
LexerOutput
(
 yytext
,
 yyleng 
)

#endif

/* Gets input and stuffs it into “buf”.  number of characters read, or YY_NULL,

 * is returned in “result”.

 */

#ifndef
 YY_INPUT

#define
 YY_INPUT
(
buf
,
result
,
max_size
)
 \

\

    
if
 
(
 
(
int
)(
result 
=
 
LexerInput
(
 
(
char
 
*
)
 buf
,
 max_size 
))
 
<   0   )  \         YY_FATAL_ERROR (   "input in flex scanner failed"   ); #endif /* No semi-colon after return; correct usage is to write "yyterminate();" -  * we don't want an extra ';' after the "return" because that will cause  * some compilers to complain about unreachable statements.  */ #ifndef  yyterminate #define  yyterminate ()   return  YY_NULL #endif /* Number of entries by which start-condition stack grows. */ #ifndef  YY_START_STACK_INCR #define  YY_START_STACK_INCR  25 #endif /* Report a fatal error. */ #ifndef  YY_FATAL_ERROR #define  YY_FATAL_ERROR ( msg )   LexerError (  msg  ) #endif /* end tables serialization structures and prototypes */ /* Default declaration of generated scanner - a define so the user can  * easily add parameters.  */ #ifndef  YY_DECL #define  YY_DECL_IS_OURS  1 #define  YY_DECL  int  yyFlexLexer :: yylex () #endif   /* !YY_DECL */ /* Code executed at the beginning of each rule, after yytext and yyleng  * have been set up.  */ #ifndef  YY_USER_ACTION #define  YY_USER_ACTION #endif /* Code executed at the end of each rule. */ #ifndef  YY_BREAK #define  YY_BREAK  /*LINTED*/ break ; #endif #define  YY_RULE_SETUP \     YY_USER_ACTION /** The main scanner function which does all the work.  */ YY_DECL {     yy_state_type yy_current_state ;      char   * yy_cp ,   * yy_bp ;      int  yy_act ;           if   (   ! ( yy_init )   )          {          ( yy_init )   =   1 ; #ifdef  YY_USER_INIT         YY_USER_INIT ; #endif          if   (   !   ( yy_start )   )              ( yy_start )   =   1 ;   /* first start state */          if   (   !  yyin  )             yyin . rdbuf ( std :: cin . rdbuf ());          if   (   !  yyout  )             yyout . rdbuf ( std :: cout . rdbuf ());          if   (   !  YY_CURRENT_BUFFER  )   {             yyensure_buffer_stack  ();             YY_CURRENT_BUFFER_LVALUE  =                 yy_create_buffer (  yyin ,  YY_BUF_SIZE  );          }         yy_load_buffer_state (    );          }      { #line   44   "scanner.l" #line   582   "lex.yy.cpp"      while   (   /*CONSTCOND*/ 1   )          /* loops until end-of-file is reached */          {         yy_cp  =   ( yy_c_buf_p );          /* Support of yytext. */          * yy_cp  =   ( yy_hold_char );          /* yy_bp points to the position in yy_ch_buf of the start of          * the current run.          */         yy_bp  =  yy_cp ;         yy_current_state  =   ( yy_start ); yy_match :          do              {             YY_CHAR yy_c  =  yy_ec [ YY_SC_TO_UI ( * yy_cp )]   ;              if   (  yy_accept [ yy_current_state ]   )                  {                  ( yy_last_accepting_state )   =  yy_current_state ;                  ( yy_last_accepting_cpos )   =  yy_cp ;                  }              while   (  yy_chk [ yy_base [ yy_current_state ]   +  yy_c ]   !=  yy_current_state  )                  {                 yy_current_state  =   ( int )  yy_def [ yy_current_state ];                  if   (  yy_current_state  >=
 
34
 
)

                    yy_c 
=
 yy_meta
[
yy_c
];

                
}

            yy_current_state 
=
 yy_nxt
[
yy_base
[
yy_current_state
]
 
+
 yy_c
];

            
++
yy_cp
;

            
}

        
while
 
(
 yy_base
[
yy_current_state
]
 
!=
 
70
 
);

yy_find_action
:

        yy_act 
=
 yy_accept
[
yy_current_state
];

        
if
 
(
 yy_act 
==
 
0
 
)

            
{
 
/* have to back up */

            yy_cp 
=
 
(
yy_last_accepting_cpos
);

            yy_current_state 
=
 
(
yy_last_accepting_state
);

            yy_act 
=
 yy_accept
[
yy_current_state
];

            
}

        YY_DO_BEFORE_ACTION
;

do_action
:
  
/* This label is used only to access EOF actions. */

        
switch
 
(
 yy_act 
)

    
{
 
/* beginning of action switch */

            
case
 
0
:
 
/* must back up */

            
/* undo the effects of YY_DO_BEFORE_ACTION */

            
*
yy_cp 
=
 
(
yy_hold_char
);

            yy_cp 
=
 
(
yy_last_accepting_cpos
);

            yy_current_state 
=
 
(
yy_last_accepting_state
);

            
goto
 yy_find_action
;

case
 
1
:

/* rule 1 can match eol */

YY_RULE_SETUP

#line
 
46
 
“scanner.l”

{}

    YY_BREAK

case
 
2
:

YY_RULE_SETUP

#line
 
48
 
“scanner.l”

{
savedState 
=
 YY_START
;
 BEGIN
(
INCOMMENT
);}

    YY_BREAK

case
 
3
:

/* rule 3 can match eol */

YY_RULE_SETUP

#line
 
50
 
“scanner.l”

{
lexeme 
=
 yytext
;
 
return
 TAG
;}

    YY_BREAK

case
 
4
:

/* rule 4 can match eol */

*
yy_cp 
=
 
(
yy_hold_char
);
 
/* undo effects of setting up yytext */

YY_LINENO_REWIND_TO
(
yy_cp 

 
1
);

(
yy_c_buf_p
)
 
=
 yy_cp 
-=
 
1
;

YY_DO_BEFORE_ACTION
;
 
/* set up yytext again */

YY_RULE_SETUP

#line
 
51
 
“scanner.l”

{
lexeme 
=
 yytext
;
 
return
 TAG
;}

    YY_BREAK

case
 
5
:

/* rule 5 can match eol */

YY_RULE_SETUP

#line
 
52
 
“scanner.l”

{
lexeme 
=
 yytext
;
 
return
 TAG
;}

    YY_BREAK

case
 
6
:

/* rule 6 can match eol */

YY_RULE_SETUP

#line
 
53
 
“scanner.l”

{
LEXEME
;
 
return
 TEXT
;}

    YY_BREAK

case
 
7
:

YY_RULE_SETUP

#line
 
55
 
“scanner.l”

{}

    YY_BREAK

case
 
8
:

YY_RULE_SETUP

#line
 
56
 
“scanner.l”

{
BEGIN
(
savedState
);}

    YY_BREAK

case
 YY_STATE_EOF
(
INITIAL
)
:

case YY_STATE_EOF(INCOMMENT):

case YY_STATE_EOF(HTMLTAG):

#line 59 “scanner.l”

{return ENDOFFILE;}

    YY_BREAKcase 9:

YY_RULE_SETUP#line 60 “scanner.l”

{}

    YY_BREAKcase 10:

YY_RULE_SETUP#line 62 “scanner.l”

ECHO;

    YY_BREAK#line 704 “lex.yy.cpp”

    case YY_END_OF_BUFFER:

        {

        /* Amount of text matched not including the EOB char. */

        int yy_amount_of_matched_text = (int) (yy_cp – (yytext_ptr)) – 1;

        /* Undo the effects of YY_DO_BEFORE_ACTION. */

        *yy_cp = (yy_hold_char);

        YY_RESTORE_YY_MORE_OFFSET

        if ( YY_CURRENT_BUFFER_LVALUE->yy_buffer_status == YY_BUFFER_NEW )

            {

            /* We’re scanning a new file or input source.  It’s             * possible that this happened because the user             * just pointed yyin at a new source and called             * yylex().  If so, then we have to assure             * consistency between YY_CURRENT_BUFFER and our             * globals.  Here is the right place to do so, because             * this is the first action (other than possibly a             * back-up) that will match for the new input source.             */

            (yy_n_chars) = YY_CURRENT_BUFFER_LVALUE->yy_n_chars;

            YY_CURRENT_BUFFER_LVALUE->yy_input_file = yyin.rdbuf();

            YY_CURRENT_BUFFER_LVALUE->yy_buffer_status = YY_BUFFER_NORMAL;

            }

        /* Note that here we test for yy_c_buf_p “<=" to the position         * of the first EOB in the buffer, since yy_c_buf_p will         * already have been incremented past the NUL character         * (since all states make transitions on EOB to the         * end-of-buffer state).  Contrast this with the test         * in input().         */         if ( (yy_c_buf_p) <= &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] )

            { /* This was really a NUL. */

            yy_state_type yy_next_state;

            (yy_c_buf_p) = (yytext_ptr) + yy_amount_of_matched_text;

            yy_current_state = yy_get_previous_state(  );

            /* Okay, we’re now positioned to make the NUL             * transition.  We couldn’t have             * yy_get_previous_state() go ahead and do it             * for us because it doesn’t know how to deal             * with the possibility of jamming (and we don’t             * want to build jamming into it because then it             * will run more slowly).             */

            yy_next_state = yy_try_NUL_trans( yy_current_state );

            yy_bp = (yytext_ptr) + YY_MORE_ADJ;

            if ( yy_next_state )

                {

                /* Consume the NUL. */

                yy_cp = ++(yy_c_buf_p);

                yy_current_state = yy_next_state;

                goto yy_match;

                }

            else

                {

                yy_cp = (yy_c_buf_p);

                goto yy_find_action;

                }

            }

        else switch ( yy_get_next_buffer(  ) )

            {

            case EOB_ACT_END_OF_FILE:

                {

                (yy_did_buffer_switch_on_eof) = 0;

                if ( yywrap(  ) )

                    {

                    /* Note: because we’ve taken care in                     * yy_get_next_buffer() to have set up                     * yytext, we can now set up                     * yy_c_buf_p so that if some total                     * hoser (like flex itself) wants to                     * call the scanner after we return the                     * YY_NULL, it’ll still work – another                     * YY_NULL will get returned.                     */

                    (yy_c_buf_p) = (yytext_ptr) + YY_MORE_ADJ;

                    yy_act = YY_STATE_EOF(YY_START);

                    goto do_action;

                    }

                else

                    {

                    if ( ! (yy_did_buffer_switch_on_eof) )

                        YY_NEW_FILE;

                    }

                break;

                }

            case EOB_ACT_CONTINUE_SCAN:

                (yy_c_buf_p) =

                    (yytext_ptr) + yy_amount_of_matched_text;

                yy_current_state = yy_get_previous_state(  );

                yy_cp = (yy_c_buf_p);

                yy_bp = (yytext_ptr) + YY_MORE_ADJ;

                goto yy_match;

            case EOB_ACT_LAST_MATCH:

                (yy_c_buf_p) =

                &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)];

                yy_current_state = yy_get_previous_state(  );

                yy_cp = (yy_c_buf_p);

                yy_bp = (yytext_ptr) + YY_MORE_ADJ;

                goto yy_find_action;

            }

        break;

        }

    default:

        YY_FATAL_ERROR(

            “fatal flex scanner internal error–no action found” );

    } /* end of action switch */

        } /* end of scanning one token */

    } /* end of user’s declarations */

} /* end of yylex */

/* The contents of this function are C++ specific, so the () macro is not used. * This constructor simply maintains backward compatibility. * DEPRECATED */

yyFlexLexer::yyFlexLexer( std::istream* arg_yyin, std::ostream* arg_yyout ):

    yyin(arg_yyin ? arg_yyin->rdbuf() : std::cin.rdbuf()),

    yyout(arg_yyout ? arg_yyout->rdbuf() : std::cout.rdbuf())

{

    ctor_common();

}

/* The contents of this function are C++ specific, so the () macro is not used. */

yyFlexLexer::yyFlexLexer( std::istream& arg_yyin, std::ostream& arg_yyout ):

    yyin(arg_yyin.rdbuf()),

    yyout(arg_yyout.rdbuf())

{

    ctor_common();

}

/* The contents of this function are C++ specific, so the () macro is not used. */

void yyFlexLexer::ctor_common()

{

    yy_c_buf_p = 0;

    yy_init = 0;

    yy_start = 0;

    yy_flex_debug = 0;

    yylineno = 1;   // this will only get updated if %option yylineno

    yy_did_buffer_switch_on_eof = 0;

    yy_looking_for_trail_begin = 0;

    yy_more_flag = 0;

    yy_more_len = 0;

    yy_more_offset = yy_prev_more_offset = 0;

    yy_start_stack_ptr = yy_start_stack_depth = 0;

    yy_start_stack = NULL;

    yy_buffer_stack = NULL;

    yy_buffer_stack_top = 0;

    yy_buffer_stack_max = 0;

    yy_state_buf = 0;

}

/* The contents of this function are C++ specific, so the () macro is not used. */

yyFlexLexer::~yyFlexLexer()

{

    delete [] yy_state_buf;

    yyfree( yy_start_stack  );

    yy_delete_buffer( YY_CURRENT_BUFFER );

    yyfree( yy_buffer_stack  );

}

/* The contents of this function are C++ specific, so the () macro is not used. */

void yyFlexLexer::switch_streams( std::istream& new_in, std::ostream& new_out )

{

    // was if( new_in )    yy_delete_buffer( YY_CURRENT_BUFFER );

    yy_switch_to_buffer( yy_create_buffer( new_in, YY_BUF_SIZE  ) );

    // was if( new_out )    yyout.rdbuf(new_out.rdbuf());

}

/* The contents of this function are C++ specific, so the () macro is not used. */

void yyFlexLexer::switch_streams( std::istream* new_in, std::ostream* new_out )

{

    if( ! new_in ) {

        new_in = &yyin;

    }

    if ( ! new_out ) {

        new_out = &yyout;

    }

    switch_streams(*new_in, *new_out);

}

#ifdef YY_INTERACTIVEint yyFlexLexer::LexerInput( char* buf, int /* max_size */ )

#else

int yyFlexLexer::LexerInput( char* buf, int max_size )

#endif

{

    if ( yyin.eof() || yyin.fail() )

        return 0;

#ifdef YY_INTERACTIVE    yyin.get( buf[0] );

    if ( yyin.eof() )

        return 0;

    if ( yyin.bad() )

        return -1;

    return 1;

#else

    (void) yyin.read( buf, max_size );

    if ( yyin.bad() )

        return -1;

    else

        return yyin.gcount();

#endif

}

void yyFlexLexer::LexerOutput( const char* buf, int size )

{

    (void) yyout.write( buf, size );

}

/* yy_get_next_buffer – try to read in a new buffer * * Returns a code representing an action: *  EOB_ACT_LAST_MATCH – *  EOB_ACT_CONTINUE_SCAN – continue scanning from current position *  EOB_ACT_END_OF_FILE – end of file */

int yyFlexLexer::yy_get_next_buffer()

{

        char *dest = YY_CURRENT_BUFFER_LVALUE->yy_ch_buf;

    char *source = (yytext_ptr);

    int number_to_move, i;

    int ret_val;

    if ( (yy_c_buf_p) > &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars) + 1] )

        YY_FATAL_ERROR(

        “fatal flex scanner internal error–end of buffer missed” );

    if ( YY_CURRENT_BUFFER_LVALUE->yy_fill_buffer == 0 )

        { /* Don’t try to fill the buffer, so this is an EOF. */

        if ( (yy_c_buf_p) – (yytext_ptr) – YY_MORE_ADJ == 1 )

            {

            /* We matched a single character, the EOB, so             * treat this as a final EOF.             */

            return EOB_ACT_END_OF_FILE;

            }

        else

            {

            /* We matched some text prior to the EOB, first             * process it.             */

            return EOB_ACT_LAST_MATCH;

            }

        }

    /* Try to read more data. */

    /* First move last chars to start of buffer. */

    number_to_move = (int) ((yy_c_buf_p) – (yytext_ptr) – 1);

    for ( i = 0; i < number_to_move; ++i )         *(dest++) = *(source++);     if ( YY_CURRENT_BUFFER_LVALUE->yy_buffer_status == YY_BUFFER_EOF_PENDING )

        /* don’t do the read, it’s not guaranteed to return an EOF,         * just force an EOF         */

        YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars) = 0;

    else

        {

            int num_to_read =

            YY_CURRENT_BUFFER_LVALUE->yy_buf_size – number_to_move – 1;

        while ( num_to_read <= 0 )             { /* Not enough room in the buffer - grow it. */             /* just a shorter name for the current buffer */             YY_BUFFER_STATE b = YY_CURRENT_BUFFER_LVALUE;             int yy_c_buf_p_offset =                 (int) ((yy_c_buf_p) - b->yy_ch_buf);

            if ( b->yy_is_our_buffer )

                {

                int new_size = b->yy_buf_size * 2;

                if ( new_size <= 0 )                     b->yy_buf_size += b->yy_buf_size / 8;

                else

                    b->yy_buf_size *= 2;

                b->yy_ch_buf = (char *)

                    /* Include room in for 2 EOB chars. */

                    yyrealloc( (void *) b->yy_ch_buf,

                             (yy_size_t) (b->yy_buf_size + 2)  );

                }

            else

                /* Can’t grow it, we don’t own it. */

                b->yy_ch_buf = NULL;

            if ( ! b->yy_ch_buf )

                YY_FATAL_ERROR(

                “fatal error – scanner input buffer overflow” );

            (yy_c_buf_p) = &b->yy_ch_buf[yy_c_buf_p_offset];

            num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size –

                        number_to_move – 1;

            }

        if ( num_to_read > YY_READ_BUF_SIZE )

            num_to_read = YY_READ_BUF_SIZE;

        /* Read in more data. */

        YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]),

            (yy_n_chars), num_to_read );

        YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);

        }

    if ( (yy_n_chars) == 0 )

        {

        if ( number_to_move == YY_MORE_ADJ )

            {

            ret_val = EOB_ACT_END_OF_FILE;

            yyrestart( yyin  );

            }

        else

            {

            ret_val = EOB_ACT_LAST_MATCH;

            YY_CURRENT_BUFFER_LVALUE->yy_buffer_status =

                YY_BUFFER_EOF_PENDING;

            }

        }

    else

        ret_val = EOB_ACT_CONTINUE_SCAN;

    if (((yy_n_chars) + number_to_move) > YY_CURRENT_BUFFER_LVALUE->yy_buf_size) {

        /* Extend the array by 50%, plus the number we really need. */

        int new_size = (yy_n_chars) + number_to_move + ((yy_n_chars) >> 1);

        YY_CURRENT_BUFFER_LVALUE->yy_ch_buf = (char *) yyrealloc(

            (void *) YY_CURRENT_BUFFER_LVALUE->yy_ch_buf, (yy_size_t) new_size  );

        if ( ! YY_CURRENT_BUFFER_LVALUE->yy_ch_buf )

            YY_FATAL_ERROR( “out of dynamic memory in yy_get_next_buffer()” );

        /* “- 2” to take care of EOB’s */

        YY_CURRENT_BUFFER_LVALUE->yy_buf_size = (int) (new_size – 2);

    }

    (yy_n_chars) += number_to_move;

    YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] = YY_END_OF_BUFFER_CHAR;

    YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars) + 1] = YY_END_OF_BUFFER_CHAR;

    (yytext_ptr) = &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[0];

    return ret_val;

}

/* yy_get_previous_state – get the state just before the EOB char was reached */

    yy_state_type yyFlexLexer::yy_get_previous_state()

{

    yy_state_type yy_current_state;

    char *yy_cp;

        yy_current_state = (yy_start);

    for ( yy_cp = (yytext_ptr) + YY_MORE_ADJ; yy_cp < (yy_c_buf_p); ++yy_cp )         {         YY_CHAR yy_c = (*yy_cp ? yy_ec[YY_SC_TO_UI(*yy_cp)] : 1);         if ( yy_accept[yy_current_state] )             {             (yy_last_accepting_state) = yy_current_state;             (yy_last_accepting_cpos) = yy_cp;             }         while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )             {             yy_current_state = (int) yy_def[yy_current_state];             if ( yy_current_state >= 34 )

                yy_c = yy_meta[yy_c];

            }

        yy_current_state = yy_nxt[yy_base[yy_current_state] + yy_c];

        }

    return yy_current_state;

}

/* yy_try_NUL_trans – try to make a transition on the NUL character * * synopsis *  next_state = yy_try_NUL_trans( current_state ); */

    yy_state_type yyFlexLexer::yy_try_NUL_trans( yy_state_type yy_current_state )

{

    int yy_is_jam;

        char *yy_cp = (yy_c_buf_p);

    YY_CHAR yy_c = 1;

    if ( yy_accept[yy_current_state] )

        {

        (yy_last_accepting_state) = yy_current_state;

        (yy_last_accepting_cpos) = yy_cp;

        }

    while ( yy_chk[yy_base[yy_current_state] + yy_c] != yy_current_state )

        {

        yy_current_state = (int) yy_def[yy_current_state];

        if ( yy_current_state >= 34 )

            yy_c = yy_meta[yy_c];

        }

    yy_current_state = yy_nxt[yy_base[yy_current_state] + yy_c];

    yy_is_jam = (yy_current_state == 33);

        return yy_is_jam ? 0 : yy_current_state;

}

#ifndef YY_NO_UNPUT    void yyFlexLexer::yyunput( int c, char* yy_bp)

{

    char *yy_cp;

        yy_cp = (yy_c_buf_p);

    /* undo effects of setting up yytext */

    *yy_cp = (yy_hold_char);

    if ( yy_cp < YY_CURRENT_BUFFER_LVALUE->yy_ch_buf + 2 )

        { /* need to shift things up to make room */

        /* +2 for EOB chars. */

        int number_to_move = (yy_n_chars) + 2;

        char *dest = &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[

                    YY_CURRENT_BUFFER_LVALUE->yy_buf_size + 2];

        char *source =

                &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move];

        while ( source > YY_CURRENT_BUFFER_LVALUE->yy_ch_buf )

            *–dest = *–source;

        yy_cp += (int) (dest – source);

        yy_bp += (int) (dest – source);

        YY_CURRENT_BUFFER_LVALUE->yy_n_chars =

            (yy_n_chars) = (int) YY_CURRENT_BUFFER_LVALUE->yy_buf_size;

        if ( yy_cp < YY_CURRENT_BUFFER_LVALUE->yy_ch_buf + 2 )

            YY_FATAL_ERROR( “flex scanner push-back overflow” );

        }

    *–yy_cp = (char) c;

    (yytext_ptr) = yy_bp;

    (yy_hold_char) = *yy_cp;

    (yy_c_buf_p) = yy_cp;

}

#endif

    int yyFlexLexer::yyinput()

{

    int c;

        *(yy_c_buf_p) = (yy_hold_char);

    if ( *(yy_c_buf_p) == YY_END_OF_BUFFER_CHAR )

        {

        /* yy_c_buf_p now points to the character we want to return.         * If this occurs *before* the EOB characters, then it’s a         * valid NUL; if not, then we’ve hit the end of the buffer.         */

        if ( (yy_c_buf_p) < &YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[(yy_n_chars)] )

            /* This was really a NUL. */

            *(yy_c_buf_p) = ‘\0’;

        else

            { /* need more input */

            int offset = (int) ((yy_c_buf_p) – (yytext_ptr));

            ++(yy_c_buf_p);

            switch ( yy_get_next_buffer(  ) )

                {

                case EOB_ACT_LAST_MATCH:

                    /* This happens because yy_g_n_b()                     * sees that we’ve accumulated a                     * token and flags that we need to                     * try matching the token before                     * proceeding.  But for input(),                     * there’s no matching to consider.                     * So convert the EOB_ACT_LAST_MATCH                     * to EOB_ACT_END_OF_FILE.                     */

                    /* Reset buffer status. */

                    yyrestart( yyin );

                    /*FALLTHROUGH*/

                case EOB_ACT_END_OF_FILE:

                    {

                    if ( yywrap(  ) )

                        return 0;

                    if ( ! (yy_did_buffer_switch_on_eof) )

                        YY_NEW_FILE;

#ifdef __cplusplus                    return yyinput();

#else

                    return input();

#endif

                    }

                case EOB_ACT_CONTINUE_SCAN:

                    (yy_c_buf_p) = (yytext_ptr) + offset;

                    break;

                }

            }

        }

    c = *(unsigned char *) (yy_c_buf_p);    /* cast for 8-bit char’s */

    *(yy_c_buf_p) = ‘\0’;   /* preserve yytext */

    (yy_hold_char) = *++(yy_c_buf_p);

    return c;

}

/** Immediately switch to a different input stream. * @param input_file A readable stream. *  * @note This function does not reset the start condition to @c INITIAL . */

    void yyFlexLexer::yyrestart( std::istream& input_file )

{

        if ( ! YY_CURRENT_BUFFER ){

        yyensure_buffer_stack ();

        YY_CURRENT_BUFFER_LVALUE =

            yy_create_buffer( yyin, YY_BUF_SIZE );

    }

    yy_init_buffer( YY_CURRENT_BUFFER, input_file );

    yy_load_buffer_state(  );

}

/** Delegate to the new version that takes an istream reference. * @param input_file A readable stream. *  * @note This function does not reset the start condition to @c INITIAL . */

void yyFlexLexer::yyrestart( std::istream* input_file )

{

    if( ! input_file ) {

        input_file = &yyin;

    }

    yyrestart( *input_file );

}

/** Switch to a different input buffer. * @param new_buffer The new input buffer. *  */

    void yyFlexLexer::yy_switch_to_buffer( YY_BUFFER_STATE new_buffer )

{

        /* TODO. We should be able to replace this entire function body     * with     *      yypop_buffer_state();     *      yypush_buffer_state(new_buffer);     */

    yyensure_buffer_stack ();

    if ( YY_CURRENT_BUFFER == new_buffer )

        return;

    if ( YY_CURRENT_BUFFER )

        {

        /* Flush out information for old buffer. */

        *(yy_c_buf_p) = (yy_hold_char);

        YY_CURRENT_BUFFER_LVALUE->yy_buf_pos = (yy_c_buf_p);

        YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);

        }

    YY_CURRENT_BUFFER_LVALUE = new_buffer;

    yy_load_buffer_state(  );

    /* We don’t actually know whether we did this switch during     * EOF (yywrap()) processing, but the only time this flag     * is looked at is after yywrap() is called, so it’s safe     * to go ahead and always set it.     */

    (yy_did_buffer_switch_on_eof) = 1;

}

    void yyFlexLexer::yy_load_buffer_state()

{

        (yy_n_chars) = YY_CURRENT_BUFFER_LVALUE->yy_n_chars;

    (yytext_ptr) = (yy_c_buf_p) = YY_CURRENT_BUFFER_LVALUE->yy_buf_pos;

    yyin.rdbuf(YY_CURRENT_BUFFER_LVALUE->yy_input_file);

    (yy_hold_char) = *(yy_c_buf_p);

}

/** Allocate and initialize an input buffer state. * @param file A readable stream. * @param size The character buffer size in bytes. When in doubt, use @c YY_BUF_SIZE. *  * @return the allocated buffer state. */

    YY_BUFFER_STATE yyFlexLexer::yy_create_buffer( std::istream& file, int size )

{

    YY_BUFFER_STATE b;

        b = (YY_BUFFER_STATE) yyalloc( sizeof( struct yy_buffer_state )  );

    if ( ! b )

        YY_FATAL_ERROR( “out of dynamic memory in yy_create_buffer()” );

    b->yy_buf_size = size;

    /* yy_ch_buf has to be 2 characters longer than the size given because     * we need to put in 2 end-of-buffer characters.     */

    b->yy_ch_buf = (char *) yyalloc( (yy_size_t) (b->yy_buf_size + 2)  );

    if ( ! b->yy_ch_buf )

        YY_FATAL_ERROR( “out of dynamic memory in yy_create_buffer()” );

    b->yy_is_our_buffer = 1;

    yy_init_buffer( b, file );

    return b;

}

/** Delegate creation of buffers to the new version that takes an istream reference. * @param file A readable stream. * @param size The character buffer size in bytes. When in doubt, use @c YY_BUF_SIZE. *  * @return the allocated buffer state. */

    YY_BUFFER_STATE yyFlexLexer::yy_create_buffer( std::istream* file, int size )

{

    return yy_create_buffer( *file, size );

}

/** Destroy the buffer. * @param b a buffer created with yy_create_buffer() *  */

    void yyFlexLexer::yy_delete_buffer( YY_BUFFER_STATE b )

{

        if ( ! b )

        return;

    if ( b == YY_CURRENT_BUFFER ) /* Not sure if we should pop here. */

        YY_CURRENT_BUFFER_LVALUE = (YY_BUFFER_STATE) 0;

    if ( b->yy_is_our_buffer )

        yyfree( (void *) b->yy_ch_buf  );

    yyfree( (void *) b  );

}

/* Initializes or reinitializes a buffer. * This function is sometimes called more than once on the same buffer, * such as during a yyrestart() or at EOF. */

    void yyFlexLexer::yy_init_buffer( YY_BUFFER_STATE b, std::istream& file )

{

    int oerrno = errno;

        yy_flush_buffer( b );

    b->yy_input_file = file.rdbuf();

    b->yy_fill_buffer = 1;

    /* If b is the current buffer, then yy_init_buffer was _probably_     * called from yyrestart() or through yy_get_next_buffer.     * In that case, we don’t want to reset the lineno or column.     */

    if (b != YY_CURRENT_BUFFER){

        b->yy_bs_lineno = 1;

        b->yy_bs_column = 0;

    }

    b->yy_is_interactive = 0;

    errno = oerrno;

}

/** Discard all buffered characters. On the next scan, YY_INPUT will be called. * @param b the buffer state to be flushed, usually @c YY_CURRENT_BUFFER. *  */

    void yyFlexLexer::yy_flush_buffer( YY_BUFFER_STATE b )

{

        if ( ! b )

        return;

    b->yy_n_chars = 0;

    /* We always need two end-of-buffer characters.  The first causes     * a transition to the end-of-buffer state.  The second causes     * a jam in that state.     */

    b->yy_ch_buf[0] = YY_END_OF_BUFFER_CHAR;

    b->yy_ch_buf[1] = YY_END_OF_BUFFER_CHAR;

    b->yy_buf_pos = &b->yy_ch_buf[0];

    b->yy_at_bol = 1;

    b->yy_buffer_status = YY_BUFFER_NEW;

    if ( b == YY_CURRENT_BUFFER )

        yy_load_buffer_state(  );

}

/** Pushes the new state onto the stack. The new state becomes *  the current state. This function will allocate the stack *  if necessary. *  @param new_buffer The new state. *   */

void yyFlexLexer::yypush_buffer_state (YY_BUFFER_STATE new_buffer)

{

        if (new_buffer == NULL)

        return;

    yyensure_buffer_stack();

    /* This block is copied from yy_switch_to_buffer. */

    if ( YY_CURRENT_BUFFER )

        {

        /* Flush out information for old buffer. */

        *(yy_c_buf_p) = (yy_hold_char);

        YY_CURRENT_BUFFER_LVALUE->yy_buf_pos = (yy_c_buf_p);

        YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars);

        }

    /* Only push if top exists. Otherwise, replace top. */

    if (YY_CURRENT_BUFFER)

        (yy_buffer_stack_top)++;

    YY_CURRENT_BUFFER_LVALUE = new_buffer;

    /* copied from yy_switch_to_buffer. */

    yy_load_buffer_state(  );

    (yy_did_buffer_switch_on_eof) = 1;

}

/** Removes and deletes the top of the stack, if present. *  The next element becomes the new top. *   */

void yyFlexLexer::yypop_buffer_state (void)

{

        if (!YY_CURRENT_BUFFER)

        return;

    yy_delete_buffer(YY_CURRENT_BUFFER );

    YY_CURRENT_BUFFER_LVALUE = NULL;

    if ((yy_buffer_stack_top) > 0)

        –(yy_buffer_stack_top);

    if (YY_CURRENT_BUFFER) {

        yy_load_buffer_state(  );

        (yy_did_buffer_switch_on_eof) = 1;

    }

}

/* Allocates the stack if it does not exist. *  Guarantees space for at least one push. */

void yyFlexLexer::yyensure_buffer_stack(void)

{

    yy_size_t num_to_alloc;

        if (!(yy_buffer_stack)) {

        /* First allocation is just for 2 elements, since we don’t know if this         * scanner will even need a stack. We use 2 instead of 1 to avoid an         * immediate realloc on the next call.         */

      num_to_alloc = 1; /* After all that talk, this was set to 1 anyways… */

        (yy_buffer_stack) = (struct yy_buffer_state**)yyalloc                                (num_to_alloc * sizeof(struct yy_buffer_state*)

                                );

        if ( ! (yy_buffer_stack) )

            YY_FATAL_ERROR( “out of dynamic memory in yyensure_buffer_stack()” );

        memset((yy_buffer_stack), 0, num_to_alloc * sizeof(struct yy_buffer_state*));

        (yy_buffer_stack_max) = num_to_alloc;

        (yy_buffer_stack_top) = 0;

        return;

    }

    if ((yy_buffer_stack_top) >= ((yy_buffer_stack_max)) – 1){

        /* Increase the buffer to prepare for a possible push. */

        yy_size_t grow_size = 8 /* arbitrary grow size */;

        num_to_alloc = (yy_buffer_stack_max) + grow_size;

        (yy_buffer_stack) = (struct yy_buffer_state**)yyrealloc                                ((yy_buffer_stack),

                                num_to_alloc * sizeof(struct yy_buffer_state*)

                                );

        if ( ! (yy_buffer_stack) )

            YY_FATAL_ERROR( “out of dynamic memory in yyensure_buffer_stack()” );

        /* zero only the new slots.*/

        memset((yy_buffer_stack) + (yy_buffer_stack_max), 0, grow_size * sizeof(struct yy_buffer_state*));

        (yy_buffer_stack_max) = num_to_alloc;

    }

}

    void yyFlexLexer::yy_push_state( int _new_state )

{

        if ( (yy_start_stack_ptr) >= (yy_start_stack_depth) )

        {

        yy_size_t new_size;

        (yy_start_stack_depth) += YY_START_STACK_INCR;

        new_size = (yy_size_t) (yy_start_stack_depth) * sizeof( int );

        if ( ! (yy_start_stack) )

            (yy_start_stack) = (int *) yyalloc( new_size  );

        else

            (yy_start_stack) = (int *) yyrealloc(

                    (void *) (yy_start_stack), new_size  );

        if ( ! (yy_start_stack) )

            YY_FATAL_ERROR( “out of memory expanding start-condition stack” );

        }

    (yy_start_stack)[(yy_start_stack_ptr)++] = YY_START;

    BEGIN(_new_state);

}

    void yyFlexLexer::yy_pop_state()

{

        if ( –(yy_start_stack_ptr) < 0 )         YY_FATAL_ERROR( "start-condition stack underflow" );     BEGIN((yy_start_stack)[(yy_start_stack_ptr)]); }     int yyFlexLexer::yy_top_state() {         return (yy_start_stack)[(yy_start_stack_ptr) - 1]; } #ifndef YY_EXIT_FAILURE#define YY_EXIT_FAILURE 2 #endif void yyFlexLexer::LexerError( const char* msg ) {         std::cerr << msg << std::endl;     exit( YY_EXIT_FAILURE ); } /* Redefine yyless() so it works in section 3 code. */ #undef yyless#define yyless(n) \    do \        { \        /* Undo effects of setting up yytext. */ \        int yyless_macro_arg = (n); \        YY_LESS_LINENO(yyless_macro_arg);\        yytext[yyleng] = (yy_hold_char); \        (yy_c_buf_p) = yytext + yyless_macro_arg; \        (yy_hold_char) = *(yy_c_buf_p); \        *(yy_c_buf_p) = '\0'; \        yyleng = yyless_macro_arg; \        } \    while ( 0 ) /* Accessor  methods (get/set functions) to struct members. */ /* * Internal utility routines. */ #ifndef yytext_ptrstatic void yy_flex_strncpy (char* s1, const char * s2, int n ) {             int i;     for ( i = 0; i < n; ++i )         s1[i] = s2[i]; } #endif #ifdef YY_NEED_STRLENstatic int yy_flex_strlen (const char * s ) {     int n;     for ( n = 0; s[n]; ++n )         ;     return n; } #endif void *yyalloc (yy_size_t  size ) {             return malloc(size); } void *yyrealloc  (void * ptr, yy_size_t  size ) {             /* The cast to (char *) in the following accommodates both     * implementations that use char* generic pointers, and those     * that use void* generic pointers.  It works with the latter     * because both ANSI C and C++ allow castless assignment from     * any pointer type to void*, and deal with argument conversions     * as though doing an assignment.     */     return realloc(ptr, size); } void yyfree (void * ptr ) {             free( (char *) ptr );   /* see yyrealloc() for (char *) cast */ } #define YYTABLES_NAME "yytables" #line 62 "scanner.l" makefile MAINPROG=xmlextract DIR=${PWD} ASST=$(notdir ${DIR}) CC=gcc CXX=g++ ## # Adjust settings for different compilers # ifeq ($(OS),Windows_NT) # # Flags for Windows compilers CPPFLAGS=-g -std=c++17 -MMD -pthread -D_GLIBCXX_DEBUG -Wall LFLAGS= RM=del /q EXE=.exe else # # Flags for Linux & MacOS CPPFLAGS=-g -std=c++17 -MMD -pthread -D_GLIBCXX_DEBUG -Wall LFLAGSx=-fuse-ld=gold -pthread RM=/bin/rm -rf EXE= endif # ######################################################################## # Macro definitions for "standard" C and C++ compilations # CFLAGS=-g TARGET=$(MAINPROG)$(EXE) CPPS=$(wildcard *.cpp) MAINCPPS=$(filter-out unittest.cpp test%.cpp, $(CPPS)) TESTCPPS=$(filter-out $(MAINPROG).cpp, $(CPPS)) LINK=g++ $(CPPFLAGS) # # # In most cases, you should not change anything below this line. # # The following is "boilerplate" to set up the standard compilation # commands: # MAINOBJS=$(MAINCPPS:%.cpp=%.o) TESTOBJS=$(TESTCPPS:%.cpp=%.o) DEPENDENCIES = $(CPPS:%.cpp=%.d) %.d: %.cpp touch $@ %.o: %.cpp $(CXX) $(CPPFLAGS) -o $@ -c $*.cpp # # Targets: # all: $(TARGET) unittest$(EXE) $(TARGET): $(MAINOBJS) $(LINK) $(FLAGS) -o $(TARGET) $^ $(LFLAGS) # Suppress this rule for student work -- they will not have flex++ #lex.yy.cpp: scanner.l # flex++ -o lex.yy.cpp scanner.l clean: -/bin/rm -rf *.d *.o $(TARGET) unittest$(EXE) docs documentation: -mkdir docs doxygen Doxyfile unittest$(EXE): $(TESTOBJS) $(LINK) $(FLAGS) -o $@ $^ $(LFLAGS) make.dep: $(DEPENDENCIES) -cat $(DEPENDENCIES) > $@
include make.dep

makefile~
MAINPROG=xmlextract
DIR=${PWD}
ASST=$(notdir ${DIR})
CC=gcc
CXX=g++
##
# Adjust settings for different compilers
#
ifeq ($(OS),Windows_NT)
#
# Flags for Windows compilers
CPPFLAGS=-g -std=c++17 -MMD -pthread -D_GLIBCXX_DEBUG -Wall
LFLAGS=
RM=del /q
EXE=.exe
else
#
# Flags for Linux & MacOS
CPPFLAGS=-g -std=c++17 -MMD -pthread -D_GLIBCXX_DEBUG -Wall
LFLAGSx=-fuse-ld=gold -pthread
RM=/bin/rm -rf
EXE=
endif
#
########################################################################
# Macro definitions for “standard” C and C++ compilations
#
CFLAGS=-g
TARGET=$(MAINPROG)$(EXE)
CPPS=$(wildcard *.cpp)
MAINCPPS=$(filter-out unittest.cpp test%.cpp, $(CPPS))
TESTCPPS=$(filter-out $(MAINPROG).cpp, $(CPPS))

LINK=g++ $(CPPFLAGS)
#
#
# In most cases, you should not change anything below this line.
#
# The following is “boilerplate” to set up the standard compilation
# commands:
#

MAINOBJS=$(MAINCPPS:%.cpp=%.o)
TESTOBJS=$(TESTCPPS:%.cpp=%.o)
DEPENDENCIES = $(CPPS:%.cpp=%.d)

%.d: %.cpp
touch $@
%.o: %.cpp
$(CXX) $(CPPFLAGS) -o $@ -c $*.cpp
#
# Targets:
#
all: $(TARGET) unittest$(EXE)
$(TARGET): $(MAINOBJS)
$(LINK) $(FLAGS) -o $(TARGET) $^ $(LFLAGS)
# Suppress this rule for student work — they will not have flex++
#lex.yy.cpp: scanner.l
# flex++ -o lex.yy.cpp scanner.l
clean:
-/bin/rm -rf *.d *.o $(TARGET) unittest$(EXE) docs
documentation:
-mkdir docs
doxygen Doxyfile

unittest$(EXE): $(TESTOBJS)
$(LINK) $(FLAGS) -o $@ $^ $(LFLAGS)

make.dep: $(DEPENDENCIES)
-cat $(DEPENDENCIES) > $@
include make.dep

node.cpp
#include “node.h”
using namespace std;
/**
* Create a node containing either an element (with no children)
* or a leaf with the given tag name/leaf content.
*
* @param elementq true iff this is to be an element
* @param content the tag name or leaf content
*/
Node::Node(bool elementq, std::string content)
: isAnElement(elementq), label(content)
{
}
Node::~Node()
{
for (Node *child : children)
{
delete child;
}
}

node.h
#ifndef NODE_H
#define NODE_H
#include
#include
struct Node {
/**
* true if this node represents an HTML element, false if
* it is a text string (leaf)
* */
bool isAnElement;
/**
* If isAnElement, contains the tag name of the element.
* If !isAnEelement, contains the text string of a leaf.
*/
std::string label;
/**
* If isAnElement, contains pointers to the children of this element.
* If !isAnEelement, this is empty and unused.
*/
std::vector children;
/**
* Create a node containing either an element (with no children)
* or a leaf with the given tag name/leaf content.
*
* @param elementq true iff this is to be an element
* @param content the tag name or leaf content
*/
Node(bool elementq, std::string content);
~Node();
};
#endif

parseState.cpp
#include “parseState.h”
using namespace std;
ParseState::ParseState()
: error(false)
{
}
/**
* Present a text string to the ParseState. If the ParseState
* is nto inside an HTML element, this is ignored.
* Otherwise it is remembered as a child of the current element.
*
* @param textContent the lexeme of a text string within an HTML element.
*/
void ParseState::text(std::string textContent)
{
if (!ParseStateStack.empty())
{
Node* n = new Node(false, textContent);
ParseStateStack.top()->children.push_back(n);
}
}
Node *ParseState::tag(std::string atag)
{
if (error)
return nullptr;
if (atag[1] == ‘/’)
{
// This is a closing tag.
string::size_type start = atag.find_first_not_of(‘ ‘, 2);
string::size_type stop = atag.find_first_of(” >”, start);
string tagName = atag.substr(start, stop – start);
if (ParseStateStack.empty() || tagName != ParseStateStack.top()->label)
{
error = true;
}
else
{
Node *n = ParseStateStack.top();
ParseStateStack.pop();
if (!ParseStateStack.empty())
{
ParseStateStack.top()->children.push_back(n);
}
return n;
}
}
else if (atag[atag.size() – 2] != ‘/’)
{
// This is an opening tag;
string::size_type start = atag.find_first_not_of(‘ ‘, 1);
string::size_type stop = atag.find_first_of(” >”, start);
string tagName = atag.substr(start, stop – start);
ParseStateStack.push(new Node(true, tagName));
}
else
{
// This is a singleton tag.
string::size_type start = atag.find_first_not_of(‘ ‘, 1);
string::size_type stop = atag.find_first_of(” />”, start);
string tagName = atag.substr(start, stop – start);
Node *n = new Node(true, tagName);
if (!ParseStateStack.empty())
{
ParseStateStack.top()->children.push_back(n);
}
return n;
}
return nullptr;
}
int ParseState::status() const
{
if (error)
return -1;
else if (ParseStateStack.empty())
return 1;
else
return 0;
}

parseState.h
#ifndef ParseState_H
#define ParseState_H

#include #include
#include
#include “node.h”
/**
* XHTML ParseState class
*/
class ParseState {
public:
/**
* Create a new ParseState.
*/
ParseState();
/**
* Present a tag to the ParseState. If this is a closing tag,
* return a tree node representing the parsed HTML for the
* corresponding element
*
* @param atag the lexeme (full string text) of a tag.
* @return a tree node or null if this is not a closing tag
*/
Node* tag (std::string atag);
/**
* Present a text string to the ParseState. If the ParseState
* is nto inside an HTML element, this is ignored.
* Otherwise it is remembered as a child of the current element.
*
* @param textContent the lexeme of a text string within an HTML element.
*/
void text (std::string textContent);
/**
* Inquire as to the balance status ofthe tags seen so far.
*
* @return 1 if all opening tags seen so far have been properly matched by
* a closing tag
*
* 0 if no mismatches have been detected, but at least one opening tag
* seen so far has not been properly matched by a closing tag
*
* -1 if we have seen at least one instance of a closing tag that
* did not match the most recently added and unmatched opening tag.
*/
int status () const;
private:
bool error;
std::stack > ParseStateStack;
};

#endif

parser.cpp
#include “parser.h”
#include “parseState.h”
#include “node.h”
#include “FlexLexer.h”
#include “scanner.h”

using namespace std;
Node* Parser::parse(std::istream& input) const
{
ParseState pstate;
yyFlexLexer scanner (&input);
int tokenKind = scanner.yylex();
Node* root = nullptr;
while (tokenKind != ENDOFFILE)
{
if (tokenKind == TAG)
{
root = pstate.tag(lexeme);
} else if (tokenKind == TEXT)
{
pstate.text(lexeme);
} else if (tokenKind == ERROR) {
return nullptr;
}
tokenKind = scanner.yylex();
}
return root;
}

parser.h
#ifndef PARSER_H
#define PARSER_H
#include
#include
#include “node.h”
class Parser {
public:
Node* parse(std::istream& input) const;
};

#endif

scanner.h
#ifndef SCANNER_H
#define SCANNER_H
#include
extern std::string lexeme;
// token kinds
const int ENDOFFILE = 0;
const int TEXT = 1;
const int LINK = 2;
const int NAME = 3;
const int TAG = 4;
const int ERROR = -1;

#endif

scanner.l
%option noyywrap
%{
#include
#include “scanner.h”
using namespace std;
int savedState, hrefMode;
std::string lexeme;

#undef ECHO
//#define ECHO cerr << yytext << flush; #define ECHO #undef LEXEME #define LEXEME lexeme = yytext; int yy_more_offset, yy_prev_more_offset; %} %x INCOMMENT HTMLTAG /* regular definitions */ delim [ \t\r\n] tagdelim [ \t\r\n\>]
whitespace {delim}+
digit [0-9]
alpha [a-zA-Z]
nota [b-zB-Z]
alphanum [a-zA-Z0-9]
tagchars [a-zA-Z0-9:]
pathchars [-~a-zA-Z0-9_/\\.]
number {digit}+(\.{digit}+)?
quote \”
apostrophe [‘]
htmltext [^<>]|[ \t\r\n]
%%
{whitespace} {}
\
;

    istringstream input 
(
inputData
);

    
Parser
 parser
;

    
Node
*
 root 
=
 parser
.
parse
(
input
);

    assertNotNull
(
root
);

    assertThat
(
root
->
label
,
 isEqualTo
(
“html”
));

    assertThat
(
root
->
children
.
size
(),
 isEqualTo
(
2
));

    
Node
*
 n 
=
 root
->
children
[
1
]
->
children
[
0
];
 
// h1

    assertThat
(
n
->
label
,
 isEqualTo
(
“h1”
));

    assertThat
(
sexp
(
root
),
 isEqualTo
(
“(html(head(title(T)))(body(h1(T))(p(Hello))(br)(p(World!))))”
));

}

UnitTest
(
ParserIgnoreWS
)

{

    string inputData 
=
 
“\n   T\n\n\n

T

\n

Hello

World!

\n”
;

    istringstream input 
(
inputData
);

    
Parser
 parser
;

    
Node
*
 root 
=
 parser
.
parse
(
input
);

    assertNotNull
(
root
);

    assertThat
(
root
->
label
,
 isEqualTo
(
“html”
));

    assertThat
(
root
->
children
.
size
(),
 isEqualTo
(
2
));

    assertThat
(
sexp
(
root
),
 isEqualTo
(
“(html(head(title(T)))(body(h1(T))(p(Hello))(br)(p(World!))))”
));

}

UnitTest
(
ParserIgnoreComments
)

{

    string inputData 
=
 
T

T

Hello

World!


;

    istringstream input 
(
inputData
);

    
Parser
 parser
;

    
Node
*
 root 
=
 parser
.
parse
(
input
);

    assertNotNull
(
root
);

    assertThat
(
root
->
label
,
 isEqualTo
(
“html”
));

    assertThat
(
root
->
children
.
size
(),
 isEqualTo
(
2
));

    assertThat
(
sexp
(
root
),
 isEqualTo
(
“(html(head(title(T)))(body(h1(T))(p(Hello))(br)(p(World!))))”
));

}

unittest.cpp
#include
#include
#include
#include
#include
#include
#include
#include #include
#include
#include
#include
#include
#include
#include
#include “unittest.h”

#ifdef __MINGW32__
#ifdef __MINGW64__
#include
#else
#include
#endif
#elif __CYGWIN__
#include
#endif
using namespace CppUnitLite;
std::map *UnitTest::tests = nullptr;
long UnitTest::numSuccesses = 0L;
long UnitTest::numFailures = 0L;
long UnitTest::numErrors = 0L;
std::string UnitTest::currentTest;
bool UnitTest::expectToFail = false;
bool UnitTest::diagnosticMessagesBeforeResults = true;
std::vector UnitTest::callLog;
std::vector UnitTest::failedTests;
#ifdef __amd64__
#define breakDebugger { asm volatile (“int $3”); }
#elif __i386__
#define breakDebugger { asm volatile (“int $3”); }
#else
#define breakDebugger { }
#endif
template <>
std::string CppUnitLite::getStringRepr(std::string t)
{
return std::string(“\””) + t + ‘”‘;
}
template <>
std::string CppUnitLite::getStringRepr(const char t[])
{
return CppUnitLite::getStringRepr(std::string(t));
}
template <>
std::string CppUnitLite::getStringRepr(char t)
{
return std::string(“‘”) + t + “‘”;
}
template <>
std::string CppUnitLite::getStringRepr(bool b)
{
return (b) ? “true” : “false”;
}

UnitTest::UnitTestFailure::UnitTestFailure (
const char* conditionStr,
const char* fileName, int lineNumber)
{
if (!UnitTest::expectToFail) {
std::ostringstream out;
out << "Failed assertion " << conditionStr << " in " << currentTest << " at " << fileName << ", line " << lineNumber << "\n"; explanation = out.str(); } else { explanation = "(expected to fail)"; } } UnitTest::UnitTestFailure::UnitTestFailure ( const std::string& conditionStr, const char* fileName, int lineNumber) { if (!UnitTest::expectToFail) { std::ostringstream out; out << fileName << ":" << lineNumber << ": \t" << conditionStr << "\n"; explanation = out.str(); } else { explanation = "(expected to fail)"; } } const char* UnitTest::UnitTestFailure::what() const noexcept { return explanation.c_str(); } AssertionResult::AssertionResult (bool theResult, std::string pexplain, std::string fexplain) : result(theResult), passExplanation(pexplain), failExplanation(fexplain) {} #ifdef __MINGW32__ bool UnitTest::debuggerIsRunning() { return IsDebuggerPresent(); } #elif __CYGWIN__ bool UnitTest::debuggerIsRunning() { bool debuggerDetected = IsDebuggerPresent(); if (debuggerDetected) { UnitTest::msg("# Debugger detected -- test time limits will be ignored.\n"); } return debuggerDetected; } #else bool UnitTest::debuggerIsRunning() { using namespace std; static bool debuggerDetected = false; const string traceField = "tracerpid"; int pid = ::getpid(); string statusFile = string("/proc/") + std::to_string(pid) + "/status"; ifstream status (statusFile); if (status) { string line; getline (status, line); while (status) { transform(line.begin(), line.end(), line.begin(), ::tolower); if (line.find(traceField) != string::npos) { string::size_type k = line.find_first_of(" \t"); if (k != string::npos) { line = line.substr(k+1); istringstream lineIn (line); pid = -1; lineIn >> pid;
if (pid > 0) {
debuggerDetected = true;
}
}
break;
}
getline (status, line);
}
}
if (debuggerDetected)
{
UnitTest::msg(“# Debugger detected — test time limits will be ignored.\n”);
}
return debuggerDetected;
}
#endif

void UnitTest::checkTest (AssertionResult assertionResult, std::string conditionStr,
const char* fileName, int lineNumber)
{
if (!assertionResult.result)
{
if (debuggerIsRunning())
{
std::string explanation = “Failed assertion: ” + conditionStr
+ “\n” + assertionResult.failExplanation;
breakDebugger;
// A unit test has failed.
// Examine explanation and your call stack for information
explanation = explanation + ” “;
}
if (assertionResult.failExplanation.size() > 0)
{
conditionStr += “\n\t” + assertionResult.failExplanation;
}
throw UnitTestFailure(conditionStr, fileName, lineNumber);
}
}

//void UnitTest::checkTest (bool condition, const string& conditionStr,
// const char* fileName, int lineNumber)
//{
// checkTest(AssertionResult(condition), conditionStr.c_str(), fileName, lineNumber);
//}

// Print a simple summary report
void UnitTest::report ()
{
UnitTest::msgSummary();
}

// Register a new UnitTest
int UnitTest::registerUT (std::string functName, int timeLimit, TestFunction funct)
{
if (tests == nullptr)
{
tests = new std::map();
}
if (tests->count(functName) > 0) {
std::cerr << "**Error: duplicate unit test named " << functName << std::endl; } (*tests)[functName] = BoundedTest(timeLimit, funct); return 0; } jmp_buf unitTestSignalEnv; int unitTestLastSignal = 0; void unitTestSignalHandler(int sig) { unitTestLastSignal = sig; longjmp (unitTestSignalEnv, sig); } int UnitTest::runTestGuarded (unsigned testNumber, std::string testName, TestFunction u, std::string& testExplanation) { currentTest = testName; expectToFail = false; try { signal(SIGFPE, &unitTestSignalHandler); signal(SIGSEGV, &unitTestSignalHandler); if (setjmp(unitTestSignalEnv)) { // Runtime error was caught std::ostringstream out; out << "# runtime error " << unitTestLastSignal; if (!expectToFail) { testExplanation = UnitTest::msgFailed(testNumber, testName, out.str(), 0); return -1; } else { // OK (failed but was expected to fail)" UnitTest::msgXFailed(testNumber, testName, out.str(), 0); } } else { u(); if (!expectToFail) { UnitTest::msgPassed(testNumber, testName, 0); } else { // Failed (passed but was expected to fail UnitTest::msgXPassed(testNumber, testName, 0); return 0; } } return 1; } catch (UnitTestFailure& ex) { if (!expectToFail) { testExplanation = UnitTest::msgFailed(testNumber, testName, ex.what(), 0); return 0; } else { // OK (failed but was expected to fail)" UnitTest::msgXFailed(testNumber, testName, ex.what(), 0); return 1; } } catch (std::exception& e) { if (!expectToFail) { UnitTest::msgError(testNumber, testName, "Unexpected error in " + currentTest + ": " +e.what(), 0); testExplanation = ""; return -1; } else { // OK (exception but was expected to fail)" UnitTest::msgXFailed(testNumber, testName, "", 0); return 1; } } catch (...) { if (!expectToFail) { UnitTest::msgError(testNumber, testName, "Unexpected error in " + currentTest, 0); testExplanation = ""; return -1; } else { // OK (exception but was expected to fail)" UnitTest::msgXFailed(testNumber, testName, "", 0); return 1; } } } /** * Reverses the expectation for the current test. A test that fails or halts * with an error will be reported and counted as OK. If that test succeeds, * it will be reported and counted as an error. * * Must be called before any assertions. */ void UnitTest::expectedToFail() { expectToFail = true; } // Run a single unit test function with no timer. void UnitTest::runTestUntimed (unsigned testNumber, std::string testName, TestFunction u) { int testResult; // 1== passed, 0 == failed, -1 == erro std::string testExplanation; // No time-out supported if compiler does not have thread support. testResult = runTestGuarded (testNumber, testName, u, testExplanation); try { // Normal exit if (testResult == 1) { ++numSuccesses; } else if (testResult == 0) { ++numFailures; failedTests.push_back(testName); UnitTest::msg(testExplanation); } else if (testResult == -1) { ++numErrors; failedTests.push_back(testName); UnitTest::msg(testExplanation); } } catch (std::runtime_error& e) { ++numErrors; failedTests.push_back(testName); UnitTest::msg(std::string("# Test ") + currentTest + " failed due to " + e.what() + "\n"); } } #ifndef __MINGW32__ // Run a single unit test function. void UnitTest::runTest (unsigned testNumber, std::string testName, TestFunction u, long timeLimit) { if (timeLimit > 0L && !debuggerIsRunning())
{
int testResult = -99; // 1== passed, 0 == failed, -1 == error
std::string testExplanation;
std::mutex m;
std::chrono::duration limit (timeLimit);
std::chrono::duration incr (100);
std::chrono::duration elapsed (0);
std::thread t([&m, &testNumber, &testName, &u, &testResult, &testExplanation](){
{
int result = runTestGuarded (testNumber, testName, u, testExplanation);
std::unique_lock l2(m);
testResult = result;
}
});
t.detach();
bool finished = false;
do {
{
std::unique_lock l(m);
finished = (testResult >= -1 || elapsed >= limit);
elapsed += incr;
}
std::this_thread::sleep_for( incr );
} while (!finished);
if (testResult < -1) { ++numFailures; failedTests.push_back(testName); std::ostringstream out; out << "# Test " << testNumber << " - " << currentTest << " still running after " << timeLimit << " milliseconds - possible infinite loop?"; if (!expectToFail) { UnitTest::msg ( UnitTest::msgFailed(testNumber, testName, out.str(), timeLimit) ); } else { UnitTest::msgXFailed(testNumber, testName, out.str(), timeLimit); ++numSuccesses; --numFailures; } } // Normal exit else if (testResult == 1) { ++numSuccesses; } else if (testResult == 0) { ++numFailures; failedTests.push_back(testName); UnitTest::msg(testExplanation); } else if (testResult == -1) { ++numErrors; failedTests.push_back(testName); UnitTest::msg(testExplanation); } } else { runTestUntimed (testNumber, testName, u); } } #else // Run a single unit test function. void UnitTest::runTest (unsigned testNumber, std::string testName, TestFunction u, long int timeLimit) { runTestUntimed (testNumber, testName, u); } #endif // Run all units tests whose name contains testNames[i], // 0 <= i <= nTests // // Special case: If nTests == 0, runs all unit Tests. void UnitTest::runTests (int nTests, char** testNames, char* program) { std::set testsToRun;
// Check for GTest emulation
for (int i = 0; i < nTests; ++i) { std::string arg = testNames[i]; } std::string badTestSpecifications = ""; for (int i = 0; i < nTests; ++i) { std::string testID = testNames[i]; bool found = false; for (const auto& utest: *tests) { if (utest.first.find(testID) != std::string::npos) { testsToRun.insert(utest.first); found = true; } } if (!found) { for (const auto& utest: *tests) { const std::string& utestName = utest.first; std::string reducedName (1, utestName[0]); for (unsigned j = 1; j < utest.first.size(); ++j) { if (utestName[j] >= ‘A’ && utestName[j] <= 'Z') { reducedName += utestName[j]; } } if (testID == reducedName) { testsToRun.insert(utest.first); found = true; } } } if (!found) { badTestSpecifications += "# Warning: No matching test found for input specification " + testID + "\n"; } } if (testsToRun.size() == 0) { for (const auto& utest: *tests) { testsToRun.insert(utest.first); } } // Emit TAP plan line UnitTest::msg ("1.." + std::to_string(testsToRun.size())); UnitTest::msg (badTestSpecifications); unsigned testNumber = 1; for (std::string testName: testsToRun) { BoundedTest test = (*tests)[testName]; runTest (testNumber, testName, test.unitTest, test.timeLimit); ++testNumber; } } /** * Clear the call log. */ void UnitTest::clearCallLog() { callLog.clear(); } /** * Position of oldest logged call. */ UnitTest::iterator UnitTest::begin() { return callLog.begin(); } /** * Position just after the most recently logged call. */ UnitTest::iterator UnitTest::end() { return callLog.end(); } /** * Log a call to a zero-parameter function. * * @param functionName name of the function */ void UnitTest::logCall (const std::string& functionName) { callLog.push_back (functionName); } void UnitTest::msgPassed (unsigned testNumber, std::string testName, unsigned timeMS) { using namespace std; cout << flush; cout << "ok " << testNumber << " - " << testName << endl; } void UnitTest::msgXPassed (unsigned testNumber, std::string testName, unsigned timeMS) { UnitTest::msg( UnitTest::msgFailed(testNumber, testName, std::string("Test ") + std::to_string(testNumber) + " - " + testName + " passed but was expected to fail.", timeMS) ); } std::string UnitTest::extractLocation (const std::string& msg) { using namespace std; string::size_type len = msg.size(); string::size_type pos1 = msg.find(".h:"); string::size_type pos2 = msg.find(".cpp:"); string::size_type pos = (pos1 < pos2) ? pos1 : pos2; string::size_type posEnd = pos + ((pos1 < pos2) ? 3 : 5); string::size_type stop = posEnd; while (stop < len && isdigit(msg[stop])) { ++stop; } if (stop == posEnd) return ""; string::size_type start = pos; char c = msg[start]; while (start <= pos && (isalnum(c) || c == '.' || c == '_' || c == '-' || c == '/' || c == '\\')) { --start; if (start <= pos) c = msg[start]; } if (start == pos) return ""; string result = msg.substr(start+1, stop-start-1); return result; } std::string UnitTest::msgFailed (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS) { using namespace std; string location = extractLocation(diagnostics); if (location.size() > 0)
location += “: error: Failed test\n”;
string diagnosticString = location + msgComment(diagnostics);

string resultMsg = “not ok ” + to_string(testNumber) + ” – ” + testName;
if (diagnosticMessagesBeforeResults)
return diagnosticString + “: \n” + resultMsg;
else
return resultMsg + “\n” + diagnosticString;
}
std::string UnitTest::msgComment (const std::string& commentary) {
const static std::string commentPrefix = “# “;
std::string result;
std::string startOfLine = commentary.substr(0, commentPrefix.size());
if (startOfLine == commentPrefix)
result = commentary;
else
result = commentPrefix + commentary;
std::string::size_type pos = result.find(‘\n’);
while (pos != std::string::npos)
{
if (result.size() >= pos+1+commentPrefix.size())
{
startOfLine = result.substr(pos+1, commentPrefix.size());
if (startOfLine != commentPrefix)
{
result.insert(pos+1, commentPrefix);
}
}
else
{
result.insert(pos+1, commentPrefix);
}
pos = result.find(‘\n’, pos+1);
}
return result;
}

void UnitTest::msgXFailed (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS)
{
std::string diagnosticMsg = msgComment(std::string(“Test “) + std::to_string(testNumber) + ” failed but was expected to fail.”);
if (diagnosticMessagesBeforeResults)
UnitTest::msg(diagnosticMsg);
UnitTest::msgPassed(testNumber, testName, timeMS);
if (!diagnosticMessagesBeforeResults)
UnitTest::msg(diagnosticMsg);
}
void UnitTest::msgError (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS)
{
std::string diagnosticMsg = msgComment(“ERROR – ” + diagnostics);
if (diagnosticMessagesBeforeResults)
UnitTest::msg(diagnosticMsg);
UnitTest::msg(“not ok ” + std::to_string(testNumber) + ” – ” + testName);
if (!diagnosticMessagesBeforeResults)
UnitTest::msg(diagnosticMsg);
}
void UnitTest::msgSummary ()
{
using namespace std;
cout << "# UnitTest: passed " << numSuccesses << " out of " << getNumTests() << " tests, for a success rate of " << std::showpoint << std::fixed << std::setprecision(1) << (100.0 * numSuccesses)/(float)getNumTests() << "%" << endl; } void UnitTest::msg (const std::string& detailMessage) { using std::cout; cout << detailMessage; if (detailMessage.size() > 0 &&
detailMessage[detailMessage.size()-1] != ‘\n’)
cout << "\n"; cout << std::flush; } StringContainsMatcher::StringContainsMatcher (const std::string& t): right(t) {} AssertionResult StringContainsMatcher::eval(const std::string& e) const { auto result = e.find(right); return AssertionResult( result != std::string::npos, "Found " + getStringRepr(right) + " starting in position " + getStringRepr(result) + " of " + getStringRepr(e), "Within " + getStringRepr(e) + ", cannot find " + getStringRepr(right)); } CppUnitLite::StringContainsMatcher contains(const char* t) { return CppUnitLite::StringContainsMatcher(std::string(t)); } CppUnitLite::StringContainsMatcher contains(const std::string& t) { return CppUnitLite::StringContainsMatcher(t); } StringEndsWithMatcher::StringEndsWithMatcher (const std::string& t): right(t) {} AssertionResult StringEndsWithMatcher::eval(const std::string& e) const { std::string eStr = getStringRepr(e); std::string rightStr = getStringRepr(right); bool result = (right.size() <= e.size()) && equal(right.begin(), right.end(), e.begin() + e.size() - right.size()); return AssertionResult(result, eStr + " ends with " + rightStr, eStr + " does not end with " + rightStr); } StringEndsWithMatcher endsWith(const char* t) { return StringEndsWithMatcher(std::string(t)); } StringEndsWithMatcher endsWith(const std::string& t) { return StringEndsWithMatcher(t); } StringBeginsWithMatcher::StringBeginsWithMatcher (const std::string& t) : right(t) {} AssertionResult StringBeginsWithMatcher::eval(const std::string& e) const { std::string eStr = getStringRepr(e); std::string rightStr = getStringRepr(right); bool result = (right.size() <= e.size()) && equal(right.begin(), right.end(), e.begin()); return AssertionResult(result, eStr + " begins with " + rightStr, eStr + " does not begin with " + rightStr ); } StringBeginsWithMatcher beginsWith(const char* t) { return CppUnitLite::StringBeginsWithMatcher(std::string(t)); } StringBeginsWithMatcher beginsWith(const std::string& t) { return StringBeginsWithMatcher(t); } StringBeginsWithMatcher startsWith(const char* t) { return StringBeginsWithMatcher(std::string(t)); } StringBeginsWithMatcher startsWith(const std::string& t) { return StringBeginsWithMatcher(t); } AssertionResult NullMatcher::eval(const void* p) const { return AssertionResult(p == nullptr, "", ""); } CppUnitLite::NullMatcher isNull() { return CppUnitLite::NullMatcher(); } AssertionResult NotNullMatcher::eval(const void* p) const { return AssertionResult(p != nullptr, "", ""); } CppUnitLite::NotNullMatcher isNotNull() { return CppUnitLite::NotNullMatcher(); } #ifndef NOMAIN int main(int argc, char** argv) { UnitTest::diagnosticMessagesBeforeResults = true; UnitTest::runTests(argc-1, argv+1, argv[0]); UnitTest::report(); return 0; } #endif unittest.h #ifndef UNITTEST_H #define UNITTEST_H #include
#include
#include
#include

#include
#include
#include
/**
* This class helps support self-checking unit tests.
*
* This is a lightweight framework similar in spirit to JUnit (for Java),
* Google Test, and Boost Test, but which can be added to a project by the
* simple addition of the two files, unittest.h and unittest.cpp. It’s not as
* robust as those other frameworks – some runtime errors will shut the
* test suite down with no final report.
*
* # Usage
*
* The framework consists of a two files, `unittest.h` and `unittest.cpp`,
* that can be dropped into a C++ project directory, allowing the creation of
* a unit test suite.
*
* A test suite consists of a collection of unit test functions, which can
* be distributed among multiple .cpp files. (Typically one such file
* would be devoted to testing each class in the project.)
*
* Each unit test function is introduced via `UnitTest` or, optionally,
* `UnitTestTimed` (which alters the default timeout, measured in
* milliseconds).
*
* Each unit test function can contain code to set up parameters, invoke
* the function(s) being tested, and to evaluate the results of those
* function calls via the use of assertions. Most assertions have the form:
*
* assertThat (value, matcher);
*
* although the following “old-fashioned” assertions are also supported.
*
* assertTrue (condition);
* assertFalse (condition);
* assertEqual (expression1, expression2);
* assertNotEqual (expression1, expression2);
* assertNull (expression);
* assertNotNull (expression);
*
* The assertThat form, however, allows for a much wider and expressive range of
* tests:
*
* ## Relational Matchers
*
* assertThat(x, isEqualTo(y));
* assertThat(x, is(y)); // same as isEqualTo
* assertThat(x, isApproximately(y, delta)); // floating point only
* assertThat(x, isNotEqualTo(y));
* assertThat(x, isNot(y)); // same as isNotEqualTo
*
* assertThat(x, isOneOf(w, y, z)); // Allows 1 or more options
*
* assertThat(x, isLessThan(y));
* assertThat(x, isGreaterThan(y));
* assertThat(x, isLessThanOrEqualTo(y));
* assertThat(x, isGreaterThanOrEqualTo(y));
*
* ## String Matchers
*
* assertThat(str, contains(“bc”));
* assertThat(str, beginsWith(str2));
* assertThat(str, endsWith(str2));
* assertThat(str, startsWith(str2)); // same as beginsWith
*
* ## Pointer Matchers
*
* assertThat(p, isNull());
* assertThat(q, isNotNull());
*
* ## Container Matchers
*
* Containers that define key_type (sets and maps, including unordered)
* will be searched using their own fast find member function. Other
* containers will be searched using a sequential search over begin()..end().
*
* assertThat(v, contains(3));
* assertThat(v, hasItem(x)); // Same as contains
* assertThat(v, hasKey(x)); // Same as contains
*
* assertThat(L, hasItems(3, 9)); // Allows one or more values
* assertThat(L, hasKeys(3, 9)); // Same as hasItems
*
* range() and arrayOfLength() can be used to describe sequences that can be
* used with any of the container objects.
*
* assertThat(range(v.begin(), v.end()), hasItem(z));
* assertThat(arrayOfLength(array, len), hasItem(z));
*
* The common case of a sequence consisting of some container’s entire contents
* from begin() to end() can also be written as contentsOf():
*
* assertThat(contentsOf(v), hasItem(z));
*
* assertThat(x, isIn(v));
* assertThat(x, isInRange(v.begin(), v.end()));
*
* assertThat(aMap, hasEntry(5, 10)); // maps only
*
* A test for equality of corresponding elements between two sequences can be
* made with matches().
*
* assertThat(range(v.begin(), v.end()), matches(range(L.begin(), L.end())));
*
* This can also be written as
*
* assertThat(contentsOf(v), matches(contentsOf(L)));
*
* ## Combining Matchers
*
* assertThat(x, !(matcher)); // Negate a matcher
*
* assertThat(x, allOf(isLessThan(42), isGreaterThan(10), is(23))); // All must be true
*
* assertThat(23, anyOf(isLessThan(42), isGreaterThan(10))); // One or more must be true
*
* # Example
*
* ## Writing A Unit Test
*
* A unit test of a simple “counter” class might look like:
*
* #include “unittest.h”
* #include “myCounter.h”
*
* UnitTest (testConstructor)
* {
* MyClass x (23);
* assertThat (x.getValue(), is(23));
* assertThat (x.isZero(), is(true));
* assertTrue (x.isZero()); // older style
* }
*
* UnitTestTimed (testIncrement, 100L) // Limited to 100ms
* {
* MyClass x (23);
* x.increment();
* assertThat (x.getValue(), is(24));
* x.increment();
* assertThat (x.getValue(), is(25));
* }
*
* UnitTestTimed (longTest, -1L) // No timer: will never time out
* {
* MyClass x (23);
* for (int i = 0; i < 10000; ++i) * x.increment(); * assertThat (x.getValue(), is(10023)); * } * * * ## Running Your Tests * * The unittest.cpp includes a main() function to drive the tests. When * run with no command-line parameters, all unit test functions are run. * If command-line parameters are provided, they provide a list of test * function names to indicate which tests to run. Specifically, * any test function whose name contains the command-line parameter * will be run. * * For example, if the above tests are compiled to form an executable * named "`unittest`", then * * ./unittest testIncrement * * or * * ./unittest Incr * * * would run only the second test above, but any of the following * * ./unittest testConstructor testIncrement longTest * ./unittest est * ./unittest * * would run all three tests. */ /** * Time limit, in milliseconds, before a test function is killed * on suspicion of the code under test having gone into an infinite loop. * * Affects all subsequent UniTest(...) declarations, but is ignored by * any UnitTestTimed(...) declarations (because they supply their own * time limit, overriding the default). * * Note that a non-positive value for this time limit suppresses the timing * check entirely. This may be useful as a way of "stopping the clock" * when debugging failed tests. */ #define DEFAULT_UNIT_TEST_TIME_LIMIT 500L /** * Macros - actual tests will invoke one of these */ #define assertThat( obj, matcher ) CppUnitLite::UnitTest::checkTest \ ((matcher).eval(obj), \ std::string(#obj) + " " + std::string(#matcher), __FILE__, __LINE__) #define assertTrue(cond) CppUnitLite::UnitTest::checkTest\ (CppUnitLite::AssertionResult(cond,"",""), #cond, __FILE__, __LINE__) #define assertTruex(cond) CppUnitLite::UnitTest::checkTest\ (cond, #cond, __FILE__, __LINE__) #define assertFalse(cond) CppUnitLite::UnitTest::checkTest\ (CppUnitLite::AssertionResult(!(cond),"",""), std::string("!(") + #cond + ")", __FILE__, __LINE__) #define assertFalsex(cond) CppUnitLite::UnitTest::checkTest\ (!(cond), std::string("!(") + #cond + ")", __FILE__, __LINE__) #define assertEqual( x, y ) assertThat(x, isEqualTo(y)) #define assertEqualx( x, y ) CppUnitLite::UnitTest::checkTest ((x)==(y),\ "assertEqual(" #x "," #y ")", \ __FILE__, __LINE__) #define assertNotEqual( x , y ) assertThat(x, isNotEqualTo(y)) #define assertNotEqualx( x , y ) assertFalse ((x)==(y)) #define assertNull(x) assertTrue ((x)==nullptr) #define assertNotNull(x) assertTrue ((x)!=nullptr) #define succeed CppUnitLite::UnitTest::checkTest (\ CppUnitLite::AssertionResult(true,"",""),\ "succeed", __FILE__, __LINE__) #define fail CppUnitLite::UnitTest::checkTest (\ CppUnitLite::AssertionResult(false,"",""), "fail",\ __FILE__, __LINE__) /** * Test registration */ #define UnitTest(functName) UnitTestTimed(functName, DEFAULT_UNIT_TEST_TIME_LIMIT) #define UnitTestTimed(functName, limit) void functName(); int functName ## dummy = \ CppUnitLite::UnitTest::registerUT(#functName, limit, &functName); void functName() namespace CppUnitLite { template
struct has_begin {
private:
template ().begin() ) >
static std::true_type try_begin(U&&);
static std::false_type try_begin(…);
public:
using type = decltype( try_begin( std::declval()));
static constexpr bool value = type();
};
template
struct can_be_written {
private:
template () << std::declval()) >
static std::true_type try_output(U&&);
static std::false_type try_output(…);
public:
using type = decltype( try_output( std::declval()));
static constexpr bool value = type();
};
template
std::string getStringRepr(const std::pair& t);
template
std::string getStringRepr(T t);
template::value, int>::type = 0>
std::string getStringRepr2(T const& t)
{
std::ostringstream out;
out << t; return out.str(); } template::value && has_begin::value, int>::type = 0>
std::string getStringRepr2(T t)
{
static const unsigned ContainerDisplayLimit = 10;
auto n = std::distance(t.begin(), t.end());
auto pos = t.begin();
unsigned count = 0;
std::string result = “[“;
while (pos != t.end() && n > 0)
{
result += getStringRepr(*pos);
if (n > 1)
result += “, “;
–n;
++pos;
++count;
if (count >= ContainerDisplayLimit && n > 0)
{
result += “…”;
break;
}
}
if (n > 0)
{
result += “… (” + getStringRepr(n) + ” additional elements) …”;
}
result += “]”;
return result;
}
template::value && !has_begin::value, int>::type = 0>
std::string getStringRepr2(T t)
{
return “???”;
}
template
std::string getStringRepr(const std::pair& t)
{
return std::string(“<") + getStringRepr(t.first) + ", " + getStringRepr(t.second) + ">“;
}
template
struct getTupleRepr
{
static std::string getContentRepr(Tuple t) {
std::string separator = (remaining > 1)? std::string(“, “) : std::string();
return getStringRepr(std::get(t))
+ separator
+ getTupleRepr::getContentRepr(t);
}
};

template
struct getTupleRepr
{
static std::string getContentRepr(Tuple t) {
return “”;
}
};
template
std::string getTupleStringRepr(Tuple t)
{
return std::string(“<") + getTupleRepr::value,
std::tuple_size::value>::getContentRepr(t)
+ “>”;
}
template
std::string getStringRepr(const std::tuple& t)
{
return getTupleStringRepr(t);
}
template
std::string getStringRepr(T t)
{
return getStringRepr2(t);
}
template <>
std::string getStringRepr(std::string t);
template <>
std::string getStringRepr(const char t[]);
template <>
std::string getStringRepr(char t);
template <>
std::string getStringRepr(bool b);

class AssertionResult {
public:
bool result; ///> True iff assertion passed
std::string passExplanation; ///> Optional explanation for passing;
std::string failExplanation; ///> Optional explanation for failure;
AssertionResult (bool theResult, std::string passExplain,
std::string failExplain);
};

/**
* Main support class for unit test execution.
*/
class UnitTest {
private:
static long numSuccesses;
static long numFailures;
static long numErrors;
static std::string currentTest;
static std::vector failedTests;
static std::vector callLog;
public:
/**
* Change to false to print diagnostics after the ok/not ok result.
*/
static bool diagnosticMessagesBeforeResults;
typedef void (*TestFunction)();
/**
* Exception thrown to indicate a failed assertion.
*/
class UnitTestFailure: public std::exception {
std::string explanation;
public:
UnitTestFailure (const char* conditionStr,
const char* fileName, int lineNumber);
UnitTestFailure (const std::string& conditionStr,
const char* fileName, int lineNumber);
virtual const char* what() const noexcept;
};
/**
* The main test function – normally called via one of the macros
* declared following this class. Does nothing if the assertion
* was passed, but throws an exception if the assertion was failed.
*
* @param result the assertion condition, “” if passed, otherwise
* contains an explanation for the failure.
* @param conditionStr a string rendering of the assertion condition.
* @param fileName Source code file in which the assertion occurs,
* @param lineNumber Source code line number at which the assertion occurs,
* @throws UnitTestFailure if condition is false.
*/
static void checkTest (AssertionResult result, std::string conditionStr,
const char* fileName, int lineNumber);

/**
* The main test function – normally called via one of the macros
* declared following this class. Does nothing if the assertion
* was passed, but throws an exception if the assertion was failed.
*
* @param condition the assertion condition, true iff passed.
* @param conditionStr a string rendering of the assertion condition.
* @param fileName Source code file in which the assertion occurs,
* @param lineNumber Source code line number at which the assertion occurs,
* @throws UnitTestFailure if condition is false.
*/
// static void checkTest (bool condition, const std::string& conditionStr,
// const char* fileName, int lineNumber);

// Summary info about tests conducted so far
/**
* How many tests have been run?
*
* @return number of tests.
*/
static long getNumTests() {return numSuccesses + numFailures;}
/**
* How many tests were terminated by a failed assertion?
*
* @return number of failed tests.
*/
static long getNumFailures() {return numFailures;}
/**
* How many tests were terminated by an unexpected exception,
* run-time error, or time-out?
*
* @return number of uncompleted tests.
*/
static long getNumErrors() {return numErrors;}
/**
* How many tests terminated successfully?
*
* @return number of passed tests.
*/
static long getNumSuccesses() {return numSuccesses;}

/**
* Run all units tests whose name contains testNames[i],
* for all i in 0..nTests-1.
*
* Special case: If nTests == 0, runs all unit Tests.
*
* @param nTests number of test name substrings
* @param testNames array of possible substrings of test names
* @param programName path to program executable
*/
static void runTests (int nTests, char** testNames, char* programName);
/**
* Print a simple summary report. Includes number of tests passed,
* failed, and erroneously termnated.
*
*/
static void report ();
/**
* Register a new UnitTest, making it eligible for running.
*
* @param functName name of the test function.
* @param timeLimit time limit in milliseconds
* @param funct the unit test function
*/
static int registerUT (std::string functName, int timeLimit, TestFunction funct);
/**
* Reverses the expectation for the current test. A test that fails or halts
* with an error will be reported and counted as OK. If that test succeeds,
* it will be reported and counted as an error.
*
* Must be called before any assertions.
*/
static void expectedToFail();
/* ********************************************************
* The call log is intended as an aid in writing stubs.
* ********************************************************/
typedef std::vector::const_iterator const_iterator;
typedef std::vector::const_iterator iterator;
/**
* Clear the call log.
*/
static void clearCallLog();
/**
* Position of oldest logged call.
*/
static iterator begin();
/**
* Position just after the most recently logged call.
*/
static iterator end();

/**
* Log a call to a zero-parameter function.
*
* @param functionName name of the function
*/
static void logCall (const std::string& functionName);
/**
* Log a call to a function with one parameter.
*
* Parameter types must support operator<< * * @param functionName name of the function * @param arg1 a parameter to the function call */ template
static void logCall (const std::string& functionName, const T1& arg1)
{
logCall (functionName + “\t” + getStringRepr(arg1));
}
/**
* Log a call to a function with two parameters.
*
* Parameter types must support operator<< * * @param functionName name of the function * @param arg1 a parameter to the function call * @param arg2 a parameter to the function call */ template
static void logCall (const std::string& functionName,
const T1& arg1, const T2& arg2)
{
logCall (functionName + “\t” + getStringRepr(arg1) + “\t” + getStringRepr(arg2));
}
/**
* Log a call to a function with three parameters.
*
* Parameter types must support operator<< * * @param functionName name of the function * @param arg1 a parameter to the function call * @param arg2 a parameter to the function call * @param arg3 a parameter to the function call */ template
static void logCall (const std::string& functionName,
const T1& arg1, const T2& arg2, const T3& arg3)
{
logCall (functionName + “\t” + getStringRepr(arg1) + “\t” + getStringRepr(arg2)
+ “\t” + getStringRepr(arg3));
}

/**
* Log a call to a function with four parameters.
*
* Parameter types must support operator<< * * @param functionName name of the function * @param arg1 a parameter to the function call * @param arg2 a parameter to the function call * @param arg3 a parameter to the function call * @param arg4 a parameter to the function call */ template
static void logCall (const std::string& functionName,
const T1& arg1, const T2& arg2, const T3& arg3, const T4& arg4)
{
logCall (functionName + “\t” + getStringRepr(arg1) + “\t” + getStringRepr(arg2)
+ “\t” + getStringRepr(arg3) + “\t” + getStringRepr(arg4));
}

// These should be private, but I wanted to unit test them.
static std::string msgComment (const std::string& commentary);
static std::string msgFailed (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS);
static bool debuggerIsRunning();
private:
/**
* Internal container for test functions and their associated time limits.
*/
struct BoundedTest {
int timeLimit;
TestFunction unitTest;
BoundedTest(): timeLimit(0), unitTest(0) {}
BoundedTest (int time, TestFunction f): timeLimit(time), unitTest(f) {}
};
static std::map *tests;
static bool expectToFail;
static void runTest(unsigned testNumber, std::string testName, TestFunction u, long timeLimitInMS);
static void runTestUntimed(unsigned testNumber, std::string testName, TestFunction u);
static int runTestGuarded(unsigned testNumber, std::string testName, TestFunction u,
std::string& msg);
static std::string extractLocation (const std::string& msg);
static void msgRunning (unsigned testNumber, std::string testName);
static void msgPassed (unsigned testNumber, std::string testName, unsigned timeMS);
static void msgXPassed (unsigned testNumber, std::string testName, unsigned timeMS);
//static std::string msgFailed (unsigned testNumber, std::string testName, unsigned timeMS);
//static std::string msgComment (const std::string& commentary);
static void msgXFailed (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS);
static void msgError (unsigned testNumber, std::string testName, std::string diagnostics, unsigned timeMS);
static void msgSummary ();
static void msg (const std::string& detailMessage);

};
inline void expectedToFail()
{
UnitTest::expectedToFail();
}
// Compile-time test for associative containers
inline constexpr auto container_has_keytype_impl(…)
-> std::false_type
{ return std::false_type{}; }
template
constexpr auto container_has_keytype_impl(C const*) -> std::true_type {
return std::true_type{};
}
template
constexpr auto container_has_keytype(C const& c)
-> decltype(container_has_keytype_impl(&c))
{
return container_has_keytype_impl(&c);
}

template
long find_in_container_impl (const Container& c, const Element& e, std::false_type)
{
long ctr = 0L;
for (auto it = c.begin(); it != c.end(); ++it)
{
if (e == *it)
return ctr;
++ctr;
}
return -1L;
}
template
long find_in_container_impl (const Container& c, const Element& e, std::true_type)
{
auto pos = c.find(e);
if (c.find(e) != c.end())
return (long)distance(c.begin(), pos);
else
return -1L;
}
template
long find_in_container (const Container& c, const Element& e)
{
return find_in_container_impl (c, e, container_has_keytype(c));
}

//// Relational Matchers
template
class EqualToMatcher {
const T right;
public:
EqualToMatcher (const T& t)
: right(t) {}
/**
* Evaluate the condition denoted by this matcher.
*/
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
std::string explain = “Expected: ”
+ rightStr
+ “\n\tObserved: ”
+ leftStr;
return AssertionResult(left == right,
“Both values were: ” + getStringRepr(left),
explain
);
}
};
template
class ApproximatelyEqualToMatcher {
const T right;
const U delta;
public:
ApproximatelyEqualToMatcher (const T& t, const U& d): right(t), delta(d) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightPlusStr = CppUnitLite::getStringRepr(right+delta);
std::string rightMinusStr = CppUnitLite::getStringRepr(right-delta);
std::string passExplain = leftStr + ” is between ” + rightMinusStr
+ ” and ” + rightPlusStr;
if (left < right - delta || left > right + delta)
return AssertionResult(false,
passExplain,
leftStr + ” is outside the range ”
+ getStringRepr(right-delta)
+ ” .. ”
+ getStringRepr(right+delta));
else
return AssertionResult(true, passExplain, “”);
}
};
template
class NotEqualToMatcher {
const T right;
public:
NotEqualToMatcher (const T& t): right(t) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
std::string explain = “Expected: ”
+ rightStr
+ “\n\tObserved: ”
+ leftStr;
return AssertionResult(!(left == right), explain,
“Both values were: ” + getStringRepr(left)
);
}
};
template
class LessThanMatcher {
const T right;
public:
LessThanMatcher (const T& t): right(t) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
return AssertionResult(left < right, leftStr + " is less than " + rightStr, leftStr + " is not less than " + rightStr ); } }; template
class GreaterThanMatcher {
const T right;
public:
GreaterThanMatcher (const T& t): right(t) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
return AssertionResult(right < left, leftStr + " is greater than " + rightStr, leftStr + " is not greater than " + rightStr ); } }; template
class LessThanOrEqualToMatcher {
const T right;
public:
LessThanOrEqualToMatcher (const T& t): right(t) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
return AssertionResult(!(right < left), leftStr + " is less than or equal to " + rightStr, leftStr + " is greater than " + rightStr ); } }; template
class GreaterThanOrEqualToMatcher {
const T right;
public:
GreaterThanOrEqualToMatcher (const T& t): right(t) {}
AssertionResult eval(const T& left) const {
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
return AssertionResult(!(left < right), leftStr + " is greater than or equal to " + rightStr, leftStr + " is less than " + rightStr ); } }; //// String Matchers class StringContainsMatcher { const std::string right; public: StringContainsMatcher (const std::string& t); AssertionResult eval(const std::string& e) const; }; class StringEndsWithMatcher { const std::string right; public: StringEndsWithMatcher (const std::string& t); AssertionResult eval(const std::string& e) const; }; class StringBeginsWithMatcher { const std::string right; public: StringBeginsWithMatcher (const std::string& t); AssertionResult eval(const std::string& e) const; }; // Pointer Matchers class NullMatcher { public: AssertionResult eval(const void* p) const; }; class NotNullMatcher { public: AssertionResult eval(const void* p) const; }; //// Container Matchers template
class ContainsMatcher {
Element right;
public:
ContainsMatcher (Element e) : right(e) {}
template
AssertionResult eval(const Container& c) const {
std::string containerStr = CppUnitLite::getStringRepr(c);
std::string rightStr = CppUnitLite::getStringRepr(right);
long pos = find_in_container(c, right);
return AssertionResult(pos >= 0,
“Found ” + rightStr + ” in position ” + getStringRepr(pos)
+ ” of ” + containerStr,
“Could not find ” + rightStr + ” in ” + containerStr
);
}
};

template
class HasEntryMatcher {
Key key;
Data data;
public:
HasEntryMatcher (const Key& k, const Data& d) : key(k), data(d) {}
template
AssertionResult eval(const Container& c) const {
std::string containerStr = CppUnitLite::getStringRepr(c);
std::string keyStr = CppUnitLite::getStringRepr(key);
auto pos = c.find(key);
if (pos != c.end())
{
return AssertionResult(data == pos->second,
“Found ” + getStringRepr(*pos)
+ ” in ” + containerStr,
“Could not find <" + keyStr + ", " + getStringRepr(data) + "> in ” + containerStr
);
}
else
return AssertionResult(pos != c.end(),
“Found ” + getStringRepr(*pos)
+ ” in ” + containerStr,
“Could not find ” + keyStr + ” in ” + containerStr
);
}
};

template
class IteratorRange {
Iterator start;
Iterator stop;
public:
typedef Iterator iterator;
typedef Iterator const_iterator;
IteratorRange (Iterator b, Iterator e): start(b), stop(e) {}
Iterator begin() const { return start; }
Iterator end() const { return stop; }
};
template
class HasItemsMatcher {
using Element = typename std::common_type::type;
typename std::vector right;
public:
HasItemsMatcher (Ts… ts): right({ts…})
{ }
template
AssertionResult eval (const Container& c) const
{
std::string cStr = getStringRepr(c);
std::string foundAll = “Found all of ” + getStringRepr(right) + ” in ” + cStr;
for (const Element& e: right)
{
if (find_in_container(c, e) < 0L) { std::string explain = "Did not find " + getStringRepr(e) + " in " + cStr; return AssertionResult(false, foundAll, explain); } } return AssertionResult(true, foundAll, foundAll); } }; template
class MatchesMatcher {
const IteratorRange range1;
public:
MatchesMatcher (IteratorRange r1) : range1(r1) {}
template
AssertionResult eval(IteratorRange range2) const {
auto d1 = std::distance(range1.begin(), range1.end());
auto d2 = std::distance(range2.begin(), range2.end());
if (d1 == d2)
{
Iterator1 pos1 = range1.begin();
Iterator2 pos2 = range2.begin();
while (pos1 != range1.end())
{
if (!(*pos1 == *pos2))
{
return AssertionResult (false, “”,
“In position ”
+ getStringRepr(std::distance(range1.begin(), pos1))
+ “, ”
+ getStringRepr(*pos1)
+ ” != ” + getStringRepr(*pos2)
);
}
++pos1;
++pos2;
}
return AssertionResult (true, “All corresponding elements were equal.”,””);
}
else
return AssertionResult(false, “”,
“Ranges are of different length (” + getStringRepr(d1)
+ ” and ” + getStringRepr(d2) + “)”);
}
};

template
class IsInMatcher {
const Container& container;
public:
IsInMatcher (const Container& c) : container(c) {}
template
AssertionResult eval(const Element& e) const {
std::string cStr = getStringRepr(container);
std::string eStr = getStringRepr(e);
long pos = find_in_container(container, e);
return AssertionResult(pos >= 0L,
“Found ” + eStr + ” in postion ” + getStringRepr(pos)
+ ” of ” + cStr,
“Could not find ” + eStr + ” in ” + cStr);
}
};

template
class IsInRangeMatcher {
Iterator start;
Iterator stop;
public:
IsInRangeMatcher (Iterator b, Iterator e) : start(b), stop(e) {}
template
AssertionResult eval(const Element& e) const {
std::string eStr = getStringRepr(e);
auto pos = find(start, stop, e);
return AssertionResult (pos != stop,
“Found ” + eStr + ” in range, ”
+ getStringRepr(distance(start,pos)) + ” steps from the start”,
“Could not find ” + eStr + ” in the range”);
}
};

//// Boolean Matchers
template
class NotMatcher {
T right;
public:
NotMatcher (const T& t): right(t) {}
template
AssertionResult eval(const U& u) const {
AssertionResult r = right.eval(u);
return AssertionResult(!(r.result), r.failExplanation, r.passExplanation);
}
};

template
class AllOfMatcher {
public:
AllOfMatcher (Rest… matchers)
{ }
template
AssertionResult eval (const T& t) const
{
return AssertionResult(true, “”, “”);
}
};
template
class AllOfMatcher {
Matcher matcher;
AllOfMatcher rest;
public:
AllOfMatcher (Matcher m, Rest… matchers): matcher(m), rest(matchers…)
{ }
template
AssertionResult eval (const T& t) const
{
AssertionResult result1 = matcher.eval(t);
if (result1.result)
return rest.eval(t);
else
return AssertionResult(false, “All of the conditions were true”,
result1.failExplanation);
}
};

template
class AnyOfMatcher {
public:
AnyOfMatcher (Rest… matchers)
{ }
template
AssertionResult eval (const T& t) const
{
return AssertionResult(false, “”, “”);
}
};
template
class AnyOfMatcher {
Matcher matcher;
AnyOfMatcher rest;
public:
AnyOfMatcher (Matcher m, Rest… matchers): matcher(m), rest(matchers…)
{ }
template
AssertionResult eval (const T& t) const
{
AssertionResult result1 = matcher.eval(t);
if (!result1.result)
return rest.eval(t);
else
return AssertionResult(true, result1.passExplanation,
“None of the conditions were true”);
}
};

template
class OneOfMatcher {
using Element = typename std::common_type::type;
typename std::vector right;
public:
OneOfMatcher (T… t): right({std::forward(t)…})
{ }
AssertionResult eval (const Element& left) const
{
std::string leftStr = CppUnitLite::getStringRepr(left);
std::string rightStr = CppUnitLite::getStringRepr(right);
std::string foundMessage = “Found ” + leftStr + ” in ” + rightStr;
std::string notFoundMessage = “Could not find ” + leftStr + ” in ” + rightStr;
for (const Element& e: right)
{
if (left == e) return AssertionResult(true, foundMessage, notFoundMessage);
}
return AssertionResult(false, foundMessage, notFoundMessage);
}
};

}

//// Matchers

/// Relational Matchers
inline CppUnitLite::EqualToMatcher
isEqualTo(const char* t)
{
return CppUnitLite::EqualToMatcher(std::string(t));
}
template
CppUnitLite::EqualToMatcher
isEqualTo(const T& t)
{
return CppUnitLite::EqualToMatcher(t);
}
inline CppUnitLite::EqualToMatcher
is(const char* t)
{
return CppUnitLite::EqualToMatcher(std::string(t));
}
template
CppUnitLite::EqualToMatcher
is(const T& t)
{
return CppUnitLite::EqualToMatcher(t);
}
template
CppUnitLite::ApproximatelyEqualToMatcher
isApproximately(const T& t, const U& delta)
{
return CppUnitLite::ApproximatelyEqualToMatcher(t, delta);
}
inline CppUnitLite::NotEqualToMatcher
isNotEqualTo(const char* t)
{
return CppUnitLite::NotEqualToMatcher(std::string(t));
}
template
CppUnitLite::NotEqualToMatcher
isNotEqualTo(const T& t)
{
return CppUnitLite::NotEqualToMatcher(t);
}
inline CppUnitLite::NotEqualToMatcher
isNot(const char* t)
{
return CppUnitLite::NotEqualToMatcher(std::string(t));
}
template
CppUnitLite::NotEqualToMatcher
isNot(const T& t)
{
return CppUnitLite::NotEqualToMatcher(t);
}
inline CppUnitLite::LessThanMatcher \
isLessThan(const char* t)
{
return CppUnitLite::LessThanMatcher(std::string(t));
}
template
CppUnitLite::LessThanMatcher isLessThan(const T& t)
{
return CppUnitLite::LessThanMatcher(t);
}
inline CppUnitLite::GreaterThanMatcher
isGreaterThan(const char* t)
{
return CppUnitLite::GreaterThanMatcher(std::string(t));
}
template
CppUnitLite::GreaterThanMatcher
isGreaterThan(const T& t)
{
return CppUnitLite::GreaterThanMatcher(t);
}
inline CppUnitLite::LessThanOrEqualToMatcher
isLessThanOrEqualTo(const char* t)
{
return CppUnitLite::LessThanOrEqualToMatcher(std::string(t));
}
template
CppUnitLite::LessThanOrEqualToMatcher
isLessThanOrEqualTo(const T& t)
{
return CppUnitLite::LessThanOrEqualToMatcher(t);
}
inline CppUnitLite::GreaterThanOrEqualToMatcher
isGreaterThanOrEqualTo(const char* t)
{
return CppUnitLite::GreaterThanOrEqualToMatcher(std::string(t));
}
template
CppUnitLite::GreaterThanOrEqualToMatcher
isGreaterThanOrEqualTo(const T& t)
{
return CppUnitLite::GreaterThanOrEqualToMatcher(t);
}

/// String matchers
CppUnitLite::StringContainsMatcher contains(const char* t);
CppUnitLite::StringContainsMatcher contains(const std::string& t);
CppUnitLite::StringEndsWithMatcher endsWith(const char* t);
CppUnitLite::StringEndsWithMatcher endsWith(const std::string& t);
CppUnitLite::StringBeginsWithMatcher beginsWith(const char* t);
CppUnitLite::StringBeginsWithMatcher beginsWith(const std::string& t);
CppUnitLite::StringBeginsWithMatcher startsWith(const char* t);
CppUnitLite::StringBeginsWithMatcher startsWith(const std::string& t);

/// Pointer matchers
CppUnitLite::NullMatcher isNull();
CppUnitLite::NotNullMatcher isNotNull();

/// Container matchers

template
CppUnitLite::ContainsMatcher hasItem(const T& e)
{
return CppUnitLite::ContainsMatcher(e);
}
template
CppUnitLite::ContainsMatcher contains(const T& e)
{
return CppUnitLite::ContainsMatcher(e);
}
template
CppUnitLite::ContainsMatcher hasKey(const T& e)
{
return CppUnitLite::ContainsMatcher(e);
}
template
CppUnitLite::HasEntryMatcher hasEntry(const Key& k, const Data& d)
{
return CppUnitLite::HasEntryMatcher(k, d);
}
template
CppUnitLite::IteratorRange
arrayOfLength (const Element* start, int n)
{
return CppUnitLite::IteratorRange(start, start+n);
}
template
CppUnitLite::IteratorRange range (Iterator start, Iterator stop)
{
return CppUnitLite::IteratorRange(start, stop);
}
template
CppUnitLite::IteratorRange contentsOf (const T& container)
{
return CppUnitLite::IteratorRange(container.begin(), container.end());
}
template
CppUnitLite::HasItemsMatcher hasItems (Ts… t)
{
return CppUnitLite::HasItemsMatcher(t…);
}
template
CppUnitLite::MatchesMatcher matches (CppUnitLite::IteratorRange arrayrange)
{
return CppUnitLite::MatchesMatcher(arrayrange);
}
template
CppUnitLite::MatchesMatcher matches (CppUnitLite::IteratorRange range)
{
return CppUnitLite::MatchesMatcher(range);
}
/// Associative container (set & map) matchers
template
CppUnitLite::HasItemsMatcher hasKeys (Ts… t)
{
return CppUnitLite::HasItemsMatcher(t…);
}
template
CppUnitLite::IsInMatcher isIn(const Container& c)
{
return CppUnitLite::IsInMatcher(c);
}
template
CppUnitLite::IsInRangeMatcher isInRange(Iterator b, Iterator e)
{
return CppUnitLite::IsInRangeMatcher(b, e);
}

/// Combining matchers
template
CppUnitLite::NotMatcher
operator!(const T& t)
{
return CppUnitLite::NotMatcher(t);
}
template
CppUnitLite::AllOfMatcher
allOf(Ts… ts)
{
return CppUnitLite::AllOfMatcher(ts…);
}
template
CppUnitLite::AnyOfMatcher
anyOf(Ts… ts)
{
return CppUnitLite::AnyOfMatcher(ts…);
}
template
CppUnitLite::OneOfMatcher
isOneOf (T… t)
{
return CppUnitLite::OneOfMatcher(t…);
}

#endif

xmlextract.cpp
#include
#include
#include
#include #include “node.h”
#include “parser.h”
#include “extraction.h”
using namespace std;
string formatted(string text)
{
// normalize whitespace
string result;
char lastChar = ‘ ‘;
for (char c : text)
{
if (c == ‘ ‘ || c == ‘\r’ || c == ‘\n’ || c == ‘\t’)
{
if (lastChar != ‘ ‘)
{
result += ‘ ‘;
lastChar = ‘ ‘;
}
}
else
{
result += c;
lastChar = c;
}
}
if (result.size() > 0 && lastChar == ‘ ‘)
{
result.erase(result.end() – 1);
}
// Break lines that would exceeed 80 characters
string::size_type lineLength = 0;
string::size_type pos = 0;
string::size_type lastBlankPos = string::npos;
while (pos < result.size()) { if (lineLength > 80 && lastBlankPos != string::npos)
{
result[lastBlankPos] = ‘\n’;
lineLength = pos – lastBlankPos + 1;
lastBlankPos = string::npos;
}
else if (result[pos] == ‘ ‘)
{
lastBlankPos = pos;
++lineLength;
++pos;
}
else
{
++lineLength;
++pos;
}
}
if (lineLength > 80 && lastBlankPos != string::npos)
{
result[lastBlankPos] = ‘\n’;
}
return result;
}
/**
* Run this as:
* xmlextract xmlFile xpath
*/
int main(int argc, char **argv)
{
if (argc != 3)
{
cerr << "usage:\n " << argv[0] << " xmlfile xpath" << endl; return 1; } string fileName = argv[1]; string xpath = argv[2]; ifstream xmlInput(fileName); Node *root = Parser().parse(xmlInput); xmlInput.close(); if (root == nullptr) { cout << fileName << " could not be parsed as XML." << endl; return 1; } Node *selected = selectByPath(root, xpath); if (selected == nullptr) { cout << xpath << " did not find a node in " << fileName << endl; return 2; } string text = extractText(selected); cout << formatted(text) << endl; return 0; }

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP