Thinking about Intelligence Discussion

Do you think that people get smarter as they get older? In what ways might people gain or lose intellectual abilities as they age? Support your opinion with information from the textbook.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Please write at least 150 words and reference back to Chapter 7 on Intelligence and thinking.

Chapter 7

Thinking and Intelligence

Figure 7.1 Thinking is an important part of our human experience, and one that has captivated people for centuries.
Today, it is one area of psychological study. The 19th-century Girl with a Book by José Ferraz de Almeida Júnior, the
20th-century sculpture The Thinker by August Rodin, and Shi Ke’s 10th-century painting Huike Thinking all reflect the
fascination with the process of human thought. (credit “middle”: modification of work by Jason Rogers; credit “right”:
modification of work by Tang Zu-Ming)

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Chapter Outline

7.1 What Is Cognition?

7.2 Language

7.3 Problem Solving

7.4 What Are Intelligence and Creativity?

7.5 Measures of Intelligence

7.6 The Source of Intelligence

Introduction
Why is it so difficult to break habits—like reaching for your ringing phone even when you shouldn’t, such
as when you’re driving? How does a person who has never seen or touched snow in real life develop an
understanding of the concept of snow? How do young children acquire the ability to learn language with
no formal instruction? Psychologists who study thinking explore questions like these.

Cognitive psychologists also study intelligence. What is intelligence, and how does it vary from person
to person? Are “street smarts” a kind of intelligence, and if so, how do they relate to other types of
intelligence? What does an IQ test really measure? These questions and more will be explored in this
chapter as you study thinking and intelligence.

In other chapters, we discussed the cognitive processes of perception, learning, and memory. In this
chapter, we will focus on high-level cognitive processes. As a part of this discussion, we will consider
thinking and briefly explore the development and use of language. We will also discuss problem solving
and creativity before ending with a discussion of how intelligence is measured and how our biology
and environments interact to affect intelligence. After finishing this chapter, you will have a greater
appreciation of the higher-level cognitive processes that contribute to our distinctiveness as a species.

Chapter 7 | Thinking and Intelligence 217

7.1 What Is Cognition?

Learning Objectives

By the end of this section, you will be able to:
• Describe

cognition

• Distinguish concepts and prototypes
• Explain the difference between natural and artificial concepts

Imagine all of your thoughts as if they were physical entities, swirling rapidly inside your mind. How is it
possible that the brain is able to move from one thought to the next in an organized, orderly fashion? The
brain is endlessly perceiving, processing, planning, organizing, and remembering—it is always active. Yet,
you don’t notice most of your brain’s activity as you move throughout your daily routine. This is only one
facet of the complex processes involved in cognition. Simply put, cognition is thinking, and it encompasses
the processes associated with perception, knowledge, problem solving, judgment, language, and memory.
Scientists who study cognition are searching for ways to understand how we integrate, organize, and
utilize our conscious cognitive experiences without being aware of all of the unconscious work that our
brains are doing (for example, Kahneman, 2011).

COGNITION
Upon waking each morning, you begin thinking—contemplating the tasks that you must complete that
day. In what order should you run your errands? Should you go to the bank, the cleaners, or the grocery
store first? Can you get these things done before you head to class or will they need to wait until school
is done? These thoughts are one example of cognition at work. Exceptionally complex, cognition is an
essential feature of human consciousness, yet not all aspects of cognition are consciously experienced.

Cognitive psychology is the field of psychology dedicated to examining how people think. It attempts
to explain how and why we think the way we do by studying the interactions among human thinking,
emotion, creativity, language, and problem solving, in addition to other cognitive processes. Cognitive
psychologists strive to determine and measure different types of intelligence, why some people are better
at problem solving than others, and how emotional intelligence affects success in the workplace, among
countless other topics. They also sometimes focus on how we organize thoughts and information gathered
from our environments into meaningful categories of thought, which will be discussed later.

CONCEPTS AND PROTOTYPES
The human nervous system is capable of handling endless streams of information. The senses serve as
the interface between the mind and the external environment, receiving stimuli and translating it into
nervous impulses that are transmitted to the brain. The brain then processes this information and uses the
relevant pieces to create thoughts, which can then be expressed through language or stored in memory
for future use. To make this process more complex, the brain does not gather information from external
environments only. When thoughts are formed, the brain also pulls information from emotions and
memories (Figure 7.2). Emotion and memory are powerful influences on both our thoughts and behaviors.

218 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Figure 7.2 Sensations and information are received by our brains, filtered through emotions and memories, and
processed to become thoughts.

In order to organize this staggering amount of information, the brain has developed a file cabinet of sorts
in the mind. The different files stored in the file cabinet are called concepts. Concepts are categories or
groupings of linguistic information, images, ideas, or memories, such as life experiences. Concepts are,
in many ways, big ideas that are generated by observing details, and categorizing and combining these
details into cognitive structures. You use concepts to see the relationships among the different elements of
your experiences and to keep the information in your mind organized and accessible.

Concepts are informed by our semantic memory (you will learn more about semantic memory in a later
chapter) and are present in every aspect of our lives; however, one of the easiest places to notice concepts
is inside a classroom, where they are discussed explicitly. When you study United States history, for
example, you learn about more than just individual events that have happened in America’s past. You
absorb a large quantity of information by listening to and participating in discussions, examining maps,
and reading first-hand accounts of people’s lives. Your brain analyzes these details and develops an overall
understanding of American history. In the process, your brain gathers details that inform and refine your
understanding of related concepts like democracy, power, and freedom.

Concepts can be complex and abstract, like justice, or more concrete, like types of birds. In psychology,
for example, Piaget’s stages of development are abstract concepts. Some concepts, like tolerance, are
agreed upon by many people, because they have been used in various ways over many years. Other
concepts, like the characteristics of your ideal friend or your family’s birthday traditions, are personal and
individualized. In this way, concepts touch every aspect of our lives, from our many daily routines to the
guiding principles behind the way governments function.

Another technique used by your brain to organize information is the identification of prototypes for the
concepts you have developed. A prototype is the best example or representation of a concept. For example,
for the category of civil disobedience, your prototype could be Rosa Parks. Her peaceful resistance to
segregation on a city bus in Montgomery, Alabama, is a recognizable example of civil disobedience.
Or your prototype could be Mohandas Gandhi, sometimes called Mahatma Gandhi (“Mahatma” is an
honorific title) (Figure 7.3).

Chapter 7 | Thinking and Intelligence 219

Figure 7.3 In 1930, Mohandas Gandhi led a group in peaceful protest against a British tax on salt in India.

Mohandas Gandhi served as a nonviolent force for independence for India while simultaneously
demanding that Buddhist, Hindu, Muslim, and Christian leaders—both Indian and British—collaborate
peacefully. Although he was not always successful in preventing violence around him, his life provides
a steadfast example of the civil disobedience prototype (Constitutional Rights Foundation, 2013). Just as
concepts can be abstract or concrete, we can make a distinction between concepts that are functions of our
direct experience with the world and those that are more artificial in nature.

NATURAL AND ARTIFICIAL CONCEPTS
In psychology, concepts can be divided into two categories, natural and artificial. Natural concepts
are created “naturally” through your experiences and can be developed from either direct or indirect
experiences. For example, if you live in Essex Junction, Vermont, you have probably had a lot of direct
experience with snow. You’ve watched it fall from the sky, you’ve seen lightly falling snow that barely
covers the windshield of your car, and you’ve shoveled out 18 inches of fluffy white snow as you’ve
thought, “This is perfect for skiing.” You’ve thrown snowballs at your best friend and gone sledding down
the steepest hill in town. In short, you know snow. You know what it looks like, smells like, tastes like,
and feels like. If, however, you’ve lived your whole life on the island of Saint Vincent in the Caribbean,
you may never have actually seen snow, much less tasted, smelled, or touched it. You know snow from
the indirect experience of seeing pictures of falling snow—or from watching films that feature snow as
part of the setting. Either way, snow is a natural concept because you can construct an understanding of it
through direct observations or experiences of snow (Figure 7.4).

220 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Figure 7.4 (a) Our concept of snow is an example of a natural concept—one that we understand through direct
observation and experience. (b) In contrast, artificial concepts are ones that we know by a specific set of
characteristics that they always exhibit, such as what defines different basic shapes. (credit a: modification of work by
Maarten Takens; credit b: modification of work by “Shayan (USA)”/Flickr)

An artificial concept, on the other hand, is a concept that is defined by a specific set of characteristics.
Various properties of geometric shapes, like squares and triangles, serve as useful examples of artificial
concepts. A triangle always has three angles and three sides. A square always has four equal sides and
four right angles. Mathematical formulas, like the equation for area (length × width) are artificial concepts
defined by specific sets of characteristics that are always the same. Artificial concepts can enhance the
understanding of a topic by building on one another. For example, before learning the concept of “area of
a square” (and the formula to find it), you must understand what a square is. Once the concept of “area
of a square” is understood, an understanding of area for other geometric shapes can be built upon the
original understanding of area. The use of artificial concepts to define an idea is crucial to communicating
with others and engaging in complex thought. According to Goldstone and Kersten (2003), concepts act as
building blocks and can be connected in countless combinations to create complex thoughts.

SCHEMATA
A schema is a mental construct consisting of a cluster or collection of related concepts (Bartlett, 1932).
There are many different types of schemata, and they all have one thing in common: schemata are a
method of organizing information that allows the brain to work more efficiently. When a schema is
activated, the brain makes immediate assumptions about the person or object being observed.

There are several types of schemata. A role schema makes assumptions about how individuals in certain
roles will behave (Callero, 1994). For example, imagine you meet someone who introduces himself as a
firefighter. When this happens, your brain automatically activates the “firefighter schema” and begins
making assumptions that this person is brave, selfless, and community-oriented. Despite not knowing
this person, already you have unknowingly made judgments about him. Schemata also help you fill in
gaps in the information you receive from the world around you. While schemata allow for more efficient
information processing, there can be problems with schemata, regardless of whether they are accurate:
Perhaps this particular firefighter is not brave, he just works as a firefighter to pay the bills while studying
to become a children’s librarian.

An event schema, also known as a cognitive script, is a set of behaviors that can feel like a routine. Think
about what you do when you walk into an elevator (Figure 7.5). First, the doors open and you wait to
let exiting passengers leave the elevator car. Then, you step into the elevator and turn around to face
the doors, looking for the correct button to push. You never face the back of the elevator, do you? And
when you’re riding in a crowded elevator and you can’t face the front, it feels uncomfortable, doesn’t it?
Interestingly, event schemata can vary widely among different cultures and countries. For example, while
it is quite common for people to greet one another with a handshake in the United States, in Tibet, you
greet someone by sticking your tongue out at them, and in Belize, you bump fists (Cairns Regional Council,

Chapter 7 | Thinking and Intelligence 221

n.d.)

Figure 7.5 What event schema do you perform when riding in an elevator? (credit: “Gideon”/Flickr)

Because event schemata are automatic, they can be difficult to change. Imagine that you are driving home
from work or school. This event schema involves getting in the car, shutting the door, and buckling your
seatbelt before putting the key in the ignition. You might perform this script two or three times each day.
As you drive home, you hear your phone’s ring tone. Typically, the event schema that occurs when you
hear your phone ringing involves locating the phone and answering it or responding to your latest text
message. So without thinking, you reach for your phone, which could be in your pocket, in your bag, or
on the passenger seat of the car. This powerful event schema is informed by your pattern of behavior and
the pleasurable stimulation that a phone call or text message gives your brain. Because it is a schema, it is
extremely challenging for us to stop reaching for the phone, even though we know that we endanger our
own lives and the lives of others while we do it (Neyfakh, 2013) (Figure 7.6).

Figure 7.6 Texting while driving is dangerous, but it is a difficult event schema for some people to resist.

Remember the elevator? It feels almost impossible to walk in and not face the door. Our powerful event
schema dictates our behavior in the elevator, and it is no different with our phones. Current research
suggests that it is the habit, or event schema, of checking our phones in many different situations that
makes refraining from checking them while driving especially difficult (Bayer & Campbell, 2012). Because
texting and driving has become a dangerous epidemic in recent years, psychologists are looking at ways
to help people interrupt the “phone schema” while driving. Event schemata like these are the reason why
many habits are difficult to break once they have been acquired. As we continue to examine thinking, keep
in mind how powerful the forces of concepts and schemata are to our understanding of the world.

222 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

7.2 Language
Learning Objectives

By the end of this section, you will be able to:
• Define language and demonstrate familiarity with the components of

language

• Understand how the use of language develops
• Explain the relationship between language and thinking

Language is a communication system that involves using words and systematic rules to organize those
words to transmit information from one individual to another. While language is a form of
communication, not all communication is language. Many species communicate with one another through
their postures, movements, odors, or vocalizations. This communication is crucial for species that need to
interact and develop social relationships with their conspecifics. However, many people have asserted that
it is language that makes humans unique among all of the animal species (Corballis & Suddendorf, 2007;
Tomasello & Rakoczy, 2003). This section will focus on what distinguishes language as a special form of
communication, how the use of language develops, and how language affects the way we think.

COMPONENTS OF LANGUAGE
Language, be it spoken, signed, or written, has specific components: a lexicon and grammar. Lexicon refers
to the words of a given language. Thus, lexicon is a language’s vocabulary. Grammar refers to the set
of rules that are used to convey meaning through the use of the lexicon (Fernández & Cairns, 2011). For
instance, English grammar dictates that most verbs receive an “-ed” at the end to indicate past tense.

Words are formed by combining the various phonemes that make up the language. A phoneme (e.g., the
sounds “ah” vs. “eh”) is a basic sound unit of a given language, and different languages have different
sets of phonemes. Phonemes are combined to form morphemes, which are the smallest units of language
that convey some type of meaning (e.g., “I” is both a phoneme and a morpheme). We use semantics and
syntax to construct language. Semantics and syntax are part of a language’s grammar. Semantics refers to
the process by which we derive meaning from morphemes and words. Syntax refers to the way words are
organized into sentences (Chomsky, 1965; Fernández & Cairns, 2011).

We apply the rules of grammar to organize the lexicon in novel and creative ways, which allow us to
communicate information about both concrete and abstract concepts. We can talk about our immediate
and observable surroundings as well as the surface of unseen planets. We can share our innermost
thoughts, our plans for the future, and debate the value of a college education. We can provide detailed
instructions for cooking a meal, fixing a car, or building a fire. The flexibility that language provides to
relay vastly different types of information is a property that makes language so distinct as a mode of
communication among humans.

LANGUAGE DEVELOPMENT
Given the remarkable complexity of a language, one might expect that mastering a language would
be an especially arduous task; indeed, for those of us trying to learn a second language as adults, this
might seem to be true. However, young children master language very quickly with relative ease. B. F.
Skinner (1957) proposed that language is learned through reinforcement. Noam Chomsky (1965) criticized
this behaviorist approach, asserting instead that the mechanisms underlying language acquisition are
biologically determined. The use of language develops in the absence of formal instruction and appears
to follow a very similar pattern in children from vastly different cultures and backgrounds. It would
seem, therefore, that we are born with a biological predisposition to acquire a language (Chomsky, 1965;
Fernández & Cairns, 2011). Moreover, it appears that there is a critical period for language acquisition,

Chapter 7 | Thinking and Intelligence 223

such that this proficiency at acquiring language is maximal early in life; generally, as people age, the ease
with which they acquire and master new languages diminishes (Johnson & Newport, 1989; Lenneberg,
1967; Singleton, 1995).

Children begin to learn about language from a very early age (Table 7.1). In fact, it appears that this is
occurring even before we are born. Newborns show preference for their mother’s voice and appear to be
able to discriminate between the language spoken by their mother and other languages. Babies are also
attuned to the languages being used around them and show preferences for videos of faces that are moving
in synchrony with the audio of spoken language versus videos that do not synchronize with the audio
(Blossom & Morgan, 2006; Pickens, 1994; Spelke & Cortelyou, 1981).

Table 7.1 Stages of Language and Communication Development

Stage Age Developmental Language and Communication

1 0–3 months Reflexive communication

2 3–8 months Reflexive communication; interest in others

3 8–13 months Intentional communication; sociability

4 12–18 months First words

5 18–24 months Simple sentences of two words

6 2–3 years Sentences of three or more words

7 3–5 years Complex sentences; has conversations

The Case of Genie

In the fall of 1970, a social worker in the Los Angeles area found a 13-year-old girl who was being raised in
extremely neglectful and abusive conditions. The girl, who came to be known as Genie, had lived most of her
life tied to a potty chair or confined to a crib in a small room that was kept closed with the curtains drawn. For a
little over a decade, Genie had virtually no social interaction and no access to the outside world. As a result of
these conditions, Genie was unable to stand up, chew solid food, or speak (Fromkin, Krashen, Curtiss, Rigler,
& Rigler, 1974; Rymer, 1993). The police took Genie into protective custody.

Genie’s abilities improved dramatically following her removal from her abusive environment, and early on, it
appeared she was acquiring language—much later than would be predicted by critical period hypotheses that
had been posited at the time (Fromkin et al., 1974). Genie managed to amass an impressive vocabulary in
a relatively short amount of time. However, she never developed a mastery of the grammatical aspects of
language (Curtiss, 1981). Perhaps being deprived of the opportunity to learn language during a critical period
impeded Genie’s ability to fully acquire and use language.

You may recall that each language has its own set of phonemes that are used to generate morphemes,
words, and so on. Babies can discriminate among the sounds that make up a language (for example, they
can tell the difference between the “s” in vision and the “ss” in fission); early on, they can differentiate
between the sounds of all human languages, even those that do not occur in the languages that are used in
their environments. However, by the time that they are about 1 year old, they can only discriminate among
those phonemes that are used in the language or languages in their environments (Jensen, 2011; Werker &

DIG DEEPER

224 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Lalonde, 1988; Werker & Tees, 1984).

Visit this website (http://openstaxcollege.org/l/language) to learn more about how
babies lose the ability to discriminate among all possible human phonemes as they
age.

After the first few months of life, babies enter what is known as the babbling stage, during which time they
tend to produce single syllables that are repeated over and over. As time passes, more variations appear in
the syllables that they produce. During this time, it is unlikely that the babies are trying to communicate;
they are just as likely to babble when they are alone as when they are with their caregivers (Fernández &
Cairns, 2011). Interestingly, babies who are raised in environments in which sign language is used will also
begin to show babbling in the gestures of their hands during this stage (Petitto, Holowka, Sergio, Levy, &
Ostry, 2004).

Generally, a child’s first word is uttered sometime between the ages of 1 year to 18 months, and for the
next few months, the child will remain in the “one word” stage of language development. During this
time, children know a number of words, but they only produce one-word utterances. The child’s early
vocabulary is limited to familiar objects or events, often nouns. Although children in this stage only make
one-word utterances, these words often carry larger meaning (Fernández & Cairns, 2011). So, for example,
a child saying “cookie” could be identifying a cookie or asking for a cookie.

As a child’s lexicon grows, she begins to utter simple sentences and to acquire new vocabulary at a very
rapid pace. In addition, children begin to demonstrate a clear understanding of the specific rules that
apply to their language(s). Even the mistakes that children sometimes make provide evidence of just how
much they understand about those rules. This is sometimes seen in the form of overgeneralization. In
this context, overgeneralization refers to an extension of a language rule to an exception to the rule. For
example, in English, it is usually the case that an “s” is added to the end of a word to indicate plurality.
For example, we speak of one dog versus two dogs. Young children will overgeneralize this rule to cases
that are exceptions to the “add an s to the end of the word” rule and say things like “those two gooses” or
“three mouses.” Clearly, the rules of the language are understood, even if the exceptions to the rules are
still being learned (Moskowitz, 1978).

LANGUAGE AND THOUGHT
When we speak one language, we agree that words are representations of ideas, people, places, and events.
The given language that children learn is connected to their culture and surroundings. But can words
themselves shape the way we think about things? Psychologists have long investigated the question of
whether language shapes thoughts and actions, or whether our thoughts and beliefs shape our language.
Two researchers, Edward Sapir and Benjamin Lee Whorf, began this investigation in the 1940s. They
wanted to understand how the language habits of a community encourage members of that community
to interpret language in a particular manner (Sapir, 1941/1964). Sapir and Whorf proposed that language
determines thought, suggesting, for example, that a person whose community language did not have past-
tense verbs would be challenged to think about the past (Whorf, 1956). Researchers have since identified
this view as too absolute, pointing out a lack of empiricism behind what Sapir and Whorf proposed
(Abler, 2013; Boroditsky, 2011; van Troyer, 1994). Today, psychologists continue to study and debate the
relationship between language and thought.

LINK TO LEARNING

Chapter 7 | Thinking and Intelligence 225

The Meaning of Language

Think about what you know of other languages; perhaps you even speak multiple languages. Imagine for
a moment that your closest friend fluently speaks more than one language. Do you think that friend thinks
differently, depending on which language is being spoken? You may know a few words that are not translatable
from their original language into English. For example, the Portuguese word saudade originated during the
15th century, when Portuguese sailors left home to explore the seas and travel to Africa or Asia. Those left
behind described the emptiness and fondness they felt as saudade (Figure 7.7). The word came to express
many meanings, including loss, nostalgia, yearning, warm memories, and hope. There is no single word in
English that includes all of those emotions in a single description. Do words such as saudade indicate that
different languages produce different patterns of thought in people? What do you think??

Figure 7.7 These two works of art depict saudade. (a) Saudade de Nápoles, which is translated into
“missing Naples,” was painted by Bertha Worms in 1895. (b) Almeida Júnior painted Saudade in 1899.

Language may indeed influence the way that we think, an idea known as linguistic determinism. One
recent demonstration of this phenomenon involved differences in the way that English and Mandarin
Chinese speakers talk and think about time. English speakers tend to talk about time using terms that
describe changes along a horizontal dimension, for example, saying something like “I’m running behind
schedule” or “Don’t get ahead of yourself.” While Mandarin Chinese speakers also describe time in
horizontal terms, it is not uncommon to also use terms associated with a vertical arrangement. For
example, the past might be described as being “up” and the future as being “down.” It turns out that these
differences in language translate into differences in performance on cognitive tests designed to measure
how quickly an individual can recognize temporal relationships. Specifically, when given a series of
tasks with vertical priming, Mandarin Chinese speakers were faster at recognizing temporal relationships
between months. Indeed, Boroditsky (2001) sees these results as suggesting that “habits in language
encourage habits in thought” (p. 12).

One group of researchers who wanted to investigate how language influences thought compared how
English speakers and the Dani people of Papua New Guinea think and speak about color. The Dani have
two words for color: one word for light and one word for dark. In contrast, the English language has 11

WHAT DO YOU THINK?

226 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

color words. Researchers hypothesized that the number of color terms could limit the ways that the Dani
people conceptualized color. However, the Dani were able to distinguish colors with the same ability as
English speakers, despite having fewer words at their disposal (Berlin & Kay, 1969). A recent review of
research aimed at determining how language might affect something like color perception suggests that
language can influence perceptual phenomena, especially in the left hemisphere of the brain. You may
recall from earlier chapters that the left hemisphere is associated with language for most people. However,
the right (less linguistic hemisphere) of the brain is less affected by linguistic influences on perception
(Regier & Kay, 2009)

7.3 Problem Solving
Learning Objectives

By the end of this section, you will be able to:
• Describe problem solving strategies
• Define algorithm and

heuristic

• Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these
problems are straightforward: To double a recipe for pizza dough, for example, all that is required is
that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more
complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your
supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You
finished the report last night, but your printer will not work today. What should you do? First, you need
to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES
When you are presented with a problem—whether it is a complex mathematical problem or a broken
printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly
identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a
solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different
action plans associated with them (Table 7.2). For example, a well-known strategy is trial and error. The
old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken
printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the
paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial
and error, you would continue to try different solutions until you solved your problem. Although trial and
error is not typically one of the most time-efficient strategies, it is a commonly used one.

Table 7.2 Problem-Solving Strategies

Method Description Example

Trial and
error

Continue trying different
solutions until problem is
solved

Restarting phone, turning off WiFi, turning off
bluetooth in order to determine why your phone is
malfunctioning

Algorithm Step-by-step problem-
solving formula

Instruction manual for installing new software on your
computer

Chapter 7 | Thinking and Intelligence 227

Table 7.2 Problem-Solving Strategies
Method Description Example

Heuristic General problem-solving
framework

Working backwards; breaking a task into steps

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you
with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an
algorithm as a recipe with highly detailed instructions that produce the same result every time they are
performed. Algorithms are used frequently in our everyday lives, especially in computer science. When
you run a search on the Internet, search engines like Google use algorithms to decide which entries will
appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your
newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly
to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman,
1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an
example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite
its time-saving characteristics, it is not always the best method for making a rational decision. Different
types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when
one of five conditions is met (Pratkanis, 1989):

• When one is faced with too much information

• When the time to make a decision is limited

• When the decision to be made is unimportant

• When there is access to very little information to use in making the decision

• When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end
result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM
on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to
plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM,
and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You
use the working backwards heuristic to plan the events of your day on a regular basis, probably without
even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series
of smaller steps. Students often use this common method to complete a large research project or long
essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the
chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough
draft, develop a final draft, organize the references list, and proofread their work before turning in the
project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles
and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most

EVERYDAY CONNECTION

228 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 7.8) is a 4×4 grid. To
solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must
total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded
box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

Figure 7.8 How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this
section.)

Here is another popular type of puzzle (Figure 7.9) that challenges your spatial reasoning skills. Connect all
nine dots with four connecting straight lines without lifting your pencil from the paper:

Figure 7.9 Did you figure it out? (The answer is at the end of this section.) Once you understand how to
crack this puzzle, you won’t forget.

Chapter 7 | Thinking and Intelligence 229

Take a look at the “Puzzling Scales” logic puzzle below (Figure 7.10). Sam Loyd, a well-known puzzle master,
created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

Figure 7.10 What steps did you take to solve this puzzle? You can read the solution at the end of this
section.

PITFALLS TO PROBLEM SOLVING
Not all problems are successfully solved, however. What challenges stop us from successfully solving a
problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a
different result.” Imagine a person in a room that has four doorways. One doorway that has always been
open in the past is now locked. The person, accustomed to exiting the room by that particular doorway,
keeps trying to get out through the same doorway even though the other three doorways are open. The
person is stuck—but she just needs to go to another doorway, instead of trying to get out through the
locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in
the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something
other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission
Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft.
An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of
being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The
engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift
air filter, which saved the lives of the astronauts.

230 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Check out this Apollo 13 scene (http://openstaxcollege.org/l/Apollo13) where the
group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment,
individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that
for which the object was originally intended. For example, the participants were told a story about a bear
and a rabbit that were separated by a river and asked to select among various objects, including a spoon,
a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the
imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants
longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to
know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects
their ability to transcend functional fixedness. It was determined that functional fixedness is experienced
in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and
reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a
situation. For example, let’s say you and three friends wanted to rent a house and had a combined target
budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a
very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why
would the realtor show you the run-down houses and the nice house? The realtor may be challenging your
anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a
decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to
spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For
example, if you think that your professor is not very nice, you notice all of the instances of rude behavior
exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily
basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even
though it really wasn’t. In other words, you knew all along that things would turn out the way they did.
Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone
or something; for example, you may assume that your professors spend their free time reading books and
engaging in intellectual conversation, because the idea of them spending their time playing volleyball or
visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example,
information, or recent experience that is that readily available to you, even though it may not be the best
example to inform your decision. Biases tend to “preserve that which is already established—to maintain
our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These
biases are summarized in Table 7.3.

Table 7.3 Summary of Decision Biases

Bias

Description

Anchoring Tendency to focus on one particular piece of information when making decisions
or problem-solving

LINK TO LEARNING

Chapter 7 | Thinking and Intelligence 231

Table 7.3 Summary of Decision Biases
Bias Description

Confirmation Focuses on information that confirms existing beliefs

Hindsight Belief that the event just experienced was predictable

Representative Unintentional stereotyping of someone or something

Availability Decision is based upon either an available precedent or an example that may be
faulty

Please visit this site (http://openstaxcollege.org/l/CogBias) to see a clever music
video that a high school teacher made to explain these and other cognitive biases to
his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in Figure 7.10? You need
nine. Were you able to solve the problems in Figure 7.8 and Figure 7.9? Here are the answers (Figure
7.11).

Figure 7.11

LINK TO LEARNING

232 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

7.4 What Are Intelligence and Creativity?
Learning Objectives

By the end of this section, you will be able to:
• Define intelligence
• Explain the

triarchic theory of intelligence

• Identify the difference between intelligence theories
• Explain

emotional intelligence

A four-and-a-half-year-old boy sits at the kitchen table with his father, who is reading a new story aloud
to him. He turns the page to continue reading, but before he can begin, the boy says, “Wait, Daddy!” He
points to the words on the new page and reads aloud, “Go, Pig! Go!” The father stops and looks at his son.
“Can you read that?” he asks. “Yes, Daddy!” And he points to the words and reads again, “Go, Pig! Go!”

This father was not actively teaching his son to read, even though the child constantly asked questions
about letters, words, and symbols that they saw everywhere: in the car, in the store, on the television. The
dad wondered about what else his son might understand and decided to try an experiment. Grabbing a
sheet of blank paper, he wrote several simple words in a list: mom, dad, dog, bird, bed, truck, car, tree. He
put the list down in front of the boy and asked him to read the words. “Mom, dad, dog, bird, bed, truck,
car, tree,” he read, slowing down to carefully pronounce bird and truck. Then, “Did I do it, Daddy?” “You
sure did! That is very good.” The father gave his little boy a warm hug and continued reading the story
about the pig, all the while wondering if his son’s abilities were an indication of exceptional intelligence
or simply a normal pattern of linguistic development. Like the father in this example, psychologists have
wondered what constitutes intelligence and how it can be measured.

CLASSIFYING INTELLIGENCE
What exactly is intelligence? The way that researchers have defined the concept of intelligence has been
modified many times since the birth of psychology. British psychologist Charles Spearman believed
intelligence consisted of one general factor, called g, which could be measured and compared among
individuals. Spearman focused on the commonalities among various intellectual abilities and
demphasized what made each unique. Long before modern psychology developed, however, ancient
philosophers, such as Aristotle, held a similar view (Cianciolo & Sternberg, 2004).

Others psychologists believe that instead of a single factor, intelligence is a collection of distinct abilities.
In the 1940s, Raymond Cattell proposed a theory of intelligence that divided general intelligence into
two components: crystallized intelligence and fluid intelligence (Cattell, 1963). Crystallized intelligence
is characterized as acquired knowledge and the ability to retrieve it. When you learn, remember, and
recall information, you are using crystallized intelligence. You use crystallized intelligence all the time in
your coursework by demonstrating that you have mastered the information covered in the course. Fluid
intelligence encompasses the ability to see complex relationships and solve problems. Navigating your
way home after being detoured onto an unfamiliar route because of road construction would draw upon
your fluid intelligence. Fluid intelligence helps you tackle complex, abstract challenges in your daily life,
whereas crystallized intelligence helps you overcome concrete, straightforward problems (Cattell, 1963).

Other theorists and psychologists believe that intelligence should be defined in more practical terms. For
example, what types of behaviors help you get ahead in life? Which skills promote success? Think about
this for a moment. Being able to recite all 44 presidents of the United States in order is an excellent party
trick, but will knowing this make you a better person?

Robert Sternberg developed another theory of intelligence, which he titled the triarchic theory of
intelligence because it sees intelligence as comprised of three parts (Sternberg, 1988): practical, creative,

Chapter 7 | Thinking and Intelligence 233

and analytical intelligence (Figure 7.12).

Figure 7.12 Sternberg’s theory identifies three types of intelligence: practical, creative, and analytical.

Practical intelligence, as proposed by Sternberg, is sometimes compared to “street smarts.” Being practical
means you find solutions that work in your everyday life by applying knowledge based on your
experiences. This type of intelligence appears to be separate from traditional understanding of IQ;
individuals who score high in practical intelligence may or may not have comparable scores in creative
and analytical intelligence (Sternberg, 1988).

This story about the 2007 Virginia Tech shootings illustrates both high and low practical intelligences.
During the incident, one student left her class to go get a soda in an adjacent building. She planned to
return to class, but when she returned to her building after getting her soda, she saw that the door she used
to leave was now chained shut from the inside. Instead of thinking about why there was a chain around
the door handles, she went to her class’s window and crawled back into the room. She thus potentially
exposed herself to the gunman. Thankfully, she was not shot. On the other hand, a pair of students was
walking on campus when they heard gunshots nearby. One friend said, “Let’s go check it out and see what
is going on.” The other student said, “No way, we need to run away from the gunshots.” They did just
that. As a result, both avoided harm. The student who crawled through the window demonstrated some
creative intelligence but did not use common sense. She would have low practical intelligence. The student
who encouraged his friend to run away from the sound of gunshots would have much higher practical
intelligence.

Analytical intelligence is closely aligned with academic problem solving and computations. Sternberg
says that analytical intelligence is demonstrated by an ability to analyze, evaluate, judge, compare, and
contrast. When reading a classic novel for literature class, for example, it is usually necessary to compare
the motives of the main characters of the book or analyze the historical context of the story. In a science
course such as anatomy, you must study the processes by which the body uses various minerals in
different human systems. In developing an understanding of this topic, you are using analytical
intelligence. When solving a challenging math problem, you would apply analytical intelligence to analyze
different aspects of the problem and then solve it section by section.

Creative intelligence is marked by inventing or imagining a solution to a problem or situation.

Creativity

in this realm can include finding a novel solution to an unexpected problem or producing a beautiful work
of art or a well-developed short story. Imagine for a moment that you are camping in the woods with some
friends and realize that you’ve forgotten your camp coffee pot. The person in your group who figures out
a way to successfully brew coffee for everyone would be credited as having higher creative intelligence.

Multiple Intelligences Theory was developed by Howard Gardner, a Harvard psychologist and former
student of Erik Erikson. Gardner’s theory, which has been refined for more than 30 years, is a more
recent development among theories of intelligence. In Gardner’s theory, each person possesses at least
eight intelligences. Among these eight intelligences, a person typically excels in some and falters in others

234 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

(Gardner, 1983). Table 7.4 describes each type of intelligence.

Table 7.4 Multiple Intelligences

Intelligence
Type Characteristics

Representative
Career

Linguistic
intelligence

Perceives different functions of language, different
sounds and meanings of words, may easily learn
multiple languages

Journalist, novelist,
poet, teacher

Logical-
mathematical
intelligence

Capable of seeing numerical patterns, strong ability to
use reason and logic

Scientist,
mathematician

Musical
intelligence

Understands and appreciates rhythm, pitch, and tone;
may play multiple instruments or perform as a vocalist

Composer, performer

Bodily
kinesthetic
intelligence

High ability to control the movements of the body and
use the body to perform various physical tasks

Dancer, athlete,
athletic coach, yoga
instructor

Spatial
intelligence

Ability to perceive the relationship between objects and
how they move in space

Choreographer,
sculptor, architect,
aviator, sailor

Interpersonal
intelligence

Ability to understand and be sensitive to the various
emotional states of others

Counselor, social
worker, salesperson

Intrapersonal
intelligence

Ability to access personal feelings and motivations, and
use them to direct behavior and reach personal goals

Key component of
personal success over
time

Naturalist
intelligence

High capacity to appreciate the natural world and
interact with the species within it

Biologist, ecologist,
environmentalist

Gardner’s theory is relatively new and needs additional research to better establish empirical support. At
the same time, his ideas challenge the traditional idea of intelligence to include a wider variety of abilities,
although it has been suggested that Gardner simply relabeled what other theorists called “cognitive styles”
as “intelligences” (Morgan, 1996). Furthermore, developing traditional measures of Gardner’s intelligences
is extremely difficult (Furnham, 2009; Gardner & Moran, 2006; Klein, 1997).

Gardner’s inter- and intrapersonal intelligences are often combined into a single type: emotional
intelligence. Emotional intelligence encompasses the ability to understand the emotions of yourself and
others, show empathy, understand social relationships and cues, and regulate your own emotions and
respond in culturally appropriate ways (Parker, Saklofske, & Stough, 2009). People with high emotional
intelligence typically have well-developed social skills. Some researchers, including Daniel Goleman, the
author of Emotional Intelligence: Why It Can Matter More than IQ, argue that emotional intelligence is a better
predictor of success than traditional intelligence (Goleman, 1995). However, emotional intelligence has
been widely debated, with researchers pointing out inconsistencies in how it is defined and described,
as well as questioning results of studies on a subject that is difficulty to measure and study emperically
(Locke, 2005; Mayer, Salovey, & Caruso, 2004)

Intelligence can also have different meanings and values in different cultures. If you live on a small island,

Chapter 7 | Thinking and Intelligence 235

where most people get their food by fishing from boats, it would be important to know how to fish
and how to repair a boat. If you were an exceptional angler, your peers would probably consider you
intelligent. If you were also skilled at repairing boats, your intelligence might be known across the whole
island. Think about your own family’s culture. What values are important for Latino families? Italian
families? In Irish families, hospitality and telling an entertaining story are marks of the culture. If you are
a skilled storyteller, other members of Irish culture are likely to consider you intelligent.

Some cultures place a high value on working together as a collective. In these cultures, the importance of
the group supersedes the importance of individual achievement. When you visit such a culture, how well
you relate to the values of that culture exemplifies your cultural intelligence, sometimes referred to as
cultural competence.

CREATIVITY
Creativity is the ability to generate, create, or discover new ideas, solutions, and possibilities. Very creative
people often have intense knowledge about something, work on it for years, look at novel solutions, seek
out the advice and help of other experts, and take risks. Although creativity is often associated with the
arts, it is actually a vital form of intelligence that drives people in many disciplines to discover something
new. Creativity can be found in every area of life, from the way you decorate your residence to a new way
of understanding how a cell works.

Creativity is often assessed as a function of one’s ability to engage in divergent thinking. Divergent
thinking can be described as thinking “outside the box;” it allows an individual to arrive at unique,
multiple solutions to a given problem. In contrast, convergent thinking describes the ability to provide a
correct or well-established answer or solution to a problem (Cropley, 2006; Gilford, 1967)

Creativity

Dr. Tom Steitz, the Sterling Professor of Biochemistry and Biophysics at Yale University, has spent his career
looking at the structure and specific aspects of RNA molecules and how their interactions cold help produce
antibiotics and ward off diseases. As a result of his lifetime of work, he won the Nobel Prize in Chemistry in
2009. He wrote, “Looking back over the development and progress of my career in science, I am reminded
how vitally important good mentorship is in the early stages of one’s career development and constant face-to-
face conversations, debate and discussions with colleagues at all stages of research. Outstanding discoveries,
insights and developments do not happen in a vacuum” (Steitz, 2010, para. 39). Based on Steitz’s comment, it
becomes clear that someone’s creativity, although an individual strength, benefits from interactions with others.
Think of a time when your creativity was sparked by a conversation with a friend or classmate. How did that
person influence you and what problem did you solve using creativity?

7.5 Measures of Intelligence
Learning Objectives

By the end of this section, you will be able to:
• Explain how intelligence tests are developed
• Describe the history of the use of IQ tests
• Describe the purposes and benefits of intelligence testing

While you’re likely familiar with the term “IQ” and associate it with the idea of intelligence, what does

EVERYDAY CONNECTION

236 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

IQ really mean? IQ stands for intelligence quotient and describes a score earned on a test designed to
measure intelligence. You’ve already learned that there are many ways psychologists describe intelligence
(or more aptly, intelligences). Similarly, IQ tests—the tools designed to measure intelligence—have been
the subject of debate throughout their development and use.

When might an IQ test be used? What do we learn from the results, and how might people use this
information? IQ tests are expensive to administer and must be given by a licensed psychologist.
Intelligence testing has been considered both a bane and a boon for education and social policy. In
this section, we will explore what intelligence tests measure, how they are scored, and how they were
developed.

MEASURING INTELLIGENCE
It seems that the human understanding of intelligence is somewhat limited when we focus on traditional or
academic-type intelligence. How then, can intelligence be measured? And when we measure intelligence,
how do we ensure that we capture what we’re really trying to measure (in other words, that IQ tests
function as valid measures of intelligence)? In the following paragraphs, we will explore the how
intelligence tests were developed and the history of their use.

The IQ test has been synonymous with intelligence for over a century. In the late 1800s, Sir Francis
Galton developed the first broad test of intelligence (Flanagan & Kaufman, 2004). Although he was not
a psychologist, his contributions to the concepts of intelligence testing are still felt today (Gordon, 1995).
Reliable intelligence testing (you may recall from earlier chapters that reliability refers to a test’s ability to
produce consistent results) began in earnest during the early 1900s with a researcher named Alfred Binet
(Figure 7.13). Binet was asked by the French government to develop an intelligence test to use on children
to determine which ones might have difficulty in school; it included many verbally based tasks. American
researchers soon realized the value of such testing. Louis Terman, a Stanford professor, modified Binet’s
work by standardizing the administration of the test and tested thousands of different-aged children to
establish an average score for each age. As a result, the test was normed and standardized, which means
that the test was administered consistently to a large enough representative sample of the population that
the range of scores resulted in a bell curve (bell curves will be discussed later). Standardization means that
the manner of administration, scoring, and interpretation of results is consistent. Norming involves giving
a test to a large population so data can be collected comparing groups, such as age groups. The resulting
data provide norms, or referential scores, by which to interpret future scores. Norms are not expectations
of what a given group should know but a demonstration of what that group does know. Norming and
standardizing the test ensures that new scores are reliable. This new version of the test was called the
Stanford-Binet Intelligence Scale (Terman, 1916). Remarkably, an updated version of this test is still widely
used today.

Chapter 7 | Thinking and Intelligence 237

Figure 7.13 French psychologist Alfred Binet helped to develop intelligence testing. (b) This page is from a 1908
version of the Binet-Simon Intelligence Scale. Children being tested were asked which face, of each pair, was prettier.

In 1939, David Wechsler, a psychologist who spent part of his career working with World War I veterans,
developed a new IQ test in the United States. Wechsler combined several subtests from other intelligence
tests used between 1880 and World War I. These subtests tapped into a variety of verbal and nonverbal
skills, because Wechsler believed that intelligence encompassed “the global capacity of a person to act
purposefully, to think rationally, and to deal effectively with his environment” (Wechsler, 1958, p. 7). He
named the test the Wechsler-Bellevue Intelligence Scale (Wechsler, 1981). This combination of subtests
became one of the most extensively used intelligence tests in the history of psychology. Although its name
was later changed to the Wechsler Adult Intelligence Scale (WAIS) and has been revised several times,
the aims of the test remain virtually unchanged since its inception (Boake, 2002). Today, there are three
intelligence tests credited to Wechsler, the Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV),
the Wechsler Intelligence Scale for Children (WISC-V), and the Wechsler Preschool and Primary Scale of
Intelligence—IV (WPPSI-IV) (Wechsler, 2012). These tests are used widely in schools and communities
throughout the United States, and they are periodically normed and standardized as a means of
recalibration. Interestingly, the periodic recalibrations have led to an interesting observation known as the
Flynn effect. Named after James Flynn, who was among the first to describe this trend, the

Flynn effect

refers to the observation that each generation has a significantly higher IQ than the last. Flynn himself
argues, however, that increased IQ scores do not necessarily mean that younger generations are more
intelligent per se (Flynn, Shaughnessy, & Fulgham, 2012). As a part of the recalibration process, the WISC-
V was given to thousands of children across the country, and children taking the test today are compared
with their same-age peers (Figure 7.13).

The WISC-V is composed of 14 subtests, which comprise five indices, which then render an IQ score. The
five indices are Verbal Comprehension, Visual Spatial, Fluid Reasoning, Working Memory, and Processing
Speed. When the test is complete, individuals receive a score for each of the five indices and a Full Scale IQ
score. The method of scoring reflects the understanding that intelligence is comprised of multiple abilities
in several cognitive realms and focuses on the mental processes that the child used to arrive at his or her
answers to each test item.

Ultimately, we are still left with the question of how valid intelligence tests are. Certainly, the most modern
versions of these tests tap into more than verbal competencies, yet the specific skills that should be assessed

238 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

in IQ testing, the degree to which any test can truly measure an individual’s intelligence, and the use of the
results of IQ tests are still issues of debate (Gresham & Witt, 1997; Flynn, Shaughnessy, & Fulgham, 2012;
Richardson, 2002; Schlinger, 2003).

Intellectually Disabled Criminals and Capital Punishment

The case of Atkins v. Virginia was a landmark case in the United States Supreme Court. On August 16, 1996,
two men, Daryl Atkins and William Jones, robbed, kidnapped, and then shot and killed Eric Nesbitt, a local
airman from the U.S. Air Force. A clinical psychologist evaluated Atkins and testified at the trial that Atkins had
an IQ of 59. The mean IQ score is 100. The psychologist concluded that Atkins was mildly mentally retarded.

The jury found Atkins guilty, and he was sentenced to death. Atkins and his attorneys appealed to the Supreme
Court. In June 2002, the Supreme Court reversed a previous decision and ruled that executions of mentally
retarded criminals are ‘cruel and unusual punishments’ prohibited by the Eighth Amendment. The court wrote
in their decision:

Clinical definitions of mental retardation require not only subaverage intellectual functioning, but
also significant limitations in adaptive skills. Mentally retarded persons frequently know the
difference between right and wrong and are competent to stand trial. Because of their impairments,
however, by definition they have diminished capacities to understand and process information, to
communicate, to abstract from mistakes and learn from experience, to engage in logical reasoning,
to control impulses, and to understand others’ reactions. Their deficiencies do not warrant an
exemption from criminal sanctions, but diminish their personal culpability (Atkins v. Virginia, 2002,
par. 5).

The court also decided that there was a state legislature consensus against the execution of the mentally
retarded and that this consensus should stand for all of the states. The Supreme Court ruling left it up to
the states to determine their own definitions of mental retardation and intellectual disability. The definitions
vary among states as to who can be executed. In the Atkins case, a jury decided that because he had many
contacts with his lawyers and thus was provided with intellectual stimulation, his IQ had reportedly increased,
and he was now smart enough to be executed. He was given an execution date and then received a stay of
execution after it was revealed that lawyers for co-defendant, William Jones, coached Jones to “produce a
testimony against Mr. Atkins that did match the evidence” (Liptak, 2008). After the revelation of this misconduct,
Atkins was re-sentenced to life imprisonment.

Atkins v. Virginia (2002) highlights several issues regarding society’s beliefs around intelligence. In the Atkins
case, the Supreme Court decided that intellectual disability does affect decision making and therefore should
affect the nature of the punishment such criminals receive. Where, however, should the lines of intellectual
disability be drawn? In May 2014, the Supreme Court ruled in a related case (Hall v. Florida) that IQ scores
cannot be used as a final determination of a prisoner’s eligibility for the death penalty (Roberts, 2014).

THE BELL CURVE
The results of intelligence tests follow the bell curve, a graph in the general shape of a bell. When the bell
curve is used in psychological testing, the graph demonstrates a normal distribution of a trait, in this case,
intelligence, in the human population. Many human traits naturally follow the bell curve. For example,
if you lined up all your female schoolmates according to height, it is likely that a large cluster of them
would be the average height for an American woman: 5’4”–5’6”. This cluster would fall in the center of
the bell curve, representing the average height for American women (Figure 7.14). There would be fewer
women who stand closer to 4’11”. The same would be true for women of above-average height: those who
stand closer to 5’11”. The trick to finding a bell curve in nature is to use a large sample size. Without a
large sample size, it is less likely that the bell curve will represent the wider population. A representative
sample is a subset of the population that accurately represents the general population. If, for example, you

WHAT DO YOU THINK?

Chapter 7 | Thinking and Intelligence 239

measured the height of the women in your classroom only, you might not actually have a representative
sample. Perhaps the women’s basketball team wanted to take this course together, and they are all in your
class. Because basketball players tend to be taller than average, the women in your class may not be a good
representative sample of the population of American women. But if your sample included all the women
at your school, it is likely that their heights would form a natural bell curve.

Figure 7.14 Are you of below-average, average, or above-average height?

The same principles apply to intelligence tests scores. Individuals earn a score called an intelligence
quotient (IQ). Over the years, different types of IQ tests have evolved, but the way scores are interpreted
remains the same. The average IQ score on an IQ test is 100. Standard deviations describe how data are
dispersed in a population and give context to large data sets. The bell curve uses the

standard deviation

to show how all scores are dispersed from the average score (Figure 7.15). In modern IQ testing, one
standard deviation is 15 points. So a score of 85 would be described as “one standard deviation below
the mean.” How would you describe a score of 115 and a score of 70? Any IQ score that falls within one
standard deviation above and below the mean (between 85 and 115) is considered average, and 68% of the
population has IQ scores in this range. An IQ score of 130 or above is considered a superior level.

240 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Figure 7.15 The majority of people have an IQ score between 85 and 115.

Only 2.2% of the population has an IQ score below 70 (American Psychological Association [APA], 2013).
A score of 70 or below indicates significant cognitive delays, major deficits in adaptive functioning,
and difficulty meeting “community standards of personal independence and social responsibility” when
compared to same-aged peers (APA, 2013, p. 37). An individual in this IQ range would be considered
to have an intellectual disability and exhibit deficits in intellectual functioning and adaptive behavior
(American Association on Intellectual and Developmental Disabilities, 2013). Formerly known as mental
retardation, the accepted term now is intellectual disability, and it has four subtypes: mild, moderate,
severe, and profound (Table 7.5). The Diagnostic and Statistical Manual of Psychological Disorders lists criteria
for each subgroup (APA, 2013).

Table 7.5 Characteristics of Cognitive Disorders

Intellectual
Disability
Subtype

Percentage of
Intellectually Disabled
Population

Description

Mild 85% 3rd- to 6th-grade skill level in reading, writing, and
math; may be employed and live independently

Moderate 10% Basic reading and writing skills; functional self-care
skills; requires some oversight

Severe 5% Functional self-care skills; requires oversight of
daily environment and activities

Profound <1% May be able to communicate verbally or nonverbally; requires intensive oversight

On the other end of the intelligence spectrum are those individuals whose IQs fall into the highest
ranges. Consistent with the bell curve, about 2% of the population falls into this category. People are
considered gifted if they have an IQ score of 130 or higher, or superior intelligence in a particular
area. Long ago, popular belief suggested that people of high intelligence were maladjusted. This idea
was disproven through a groundbreaking study of gifted children. In 1921, Lewis Terman began a
longitudinal study of over 1500 children with IQs over 135 (Terman, 1925). His findings showed that

Chapter 7 | Thinking and Intelligence 241

these children became well-educated, successful adults who were, in fact, well-adjusted (Terman & Oden,
1947). Additionally, Terman’s study showed that the subjects were above average in physical build and
attractiveness, dispelling an earlier popular notion that highly intelligent people were “weaklings.” Some
people with very high IQs elect to join Mensa, an organization dedicated to identifying, researching, and
fostering intelligence. Members must have an IQ score in the top 2% of the population, and they may be
required to pass other exams in their application to join the group.

What’s in a Name? Mental Retardation

In the past, individuals with IQ scores below 70 and significant adaptive and social functioning delays were
diagnosed with mental retardation. When this diagnosis was first named, the title held no social stigma. In
time, however, the degrading word “retard” sprang from this diagnostic term. “Retard” was frequently used as
a taunt, especially among young people, until the words “mentally retarded” and “retard” became an insult. As
such, the DSM-5 now labels this diagnosis as “intellectual disability.” Many states once had a Department of
Mental Retardation to serve those diagnosed with such cognitive delays, but most have changed their name to
Department of Developmental Disabilities or something similar in language. The Social Security Administration
still uses the term “mental retardation” but is considering eliminating it from its programming (Goad, 2013).
Earlier in the chapter, we discussed how language affects how we think. Do you think changing the title of
this department has any impact on how people regard those with developmental disabilities? Does a different
name give people more dignity, and if so, how? Does it change the expectations for those with developmental
or cognitive disabilities? Why or why not?

WHY MEASURE INTELLIGENCE?
The value of IQ testing is most evident in educational or clinical settings. Children who seem to be
experiencing learning difficulties or severe behavioral problems can be tested to ascertain whether the
child’s difficulties can be partly attributed to an IQ score that is significantly different from the mean for
her age group. Without IQ testing—or another measure of intelligence—children and adults needing extra
support might not be identified effectively. In addition, IQ testing is used in courts to determine whether a
defendant has special or extenuating circumstances that preclude him from participating in some way in a
trial. People also use IQ testing results to seek disability benefits from the Social Security Administration.
While IQ tests have sometimes been used as arguments in support of insidious purposes, such as the
eugenics movement (Severson, 2011), the following case study demonstrates the usefulness and benefits of
IQ testing.

Candace, a 14-year-old girl experiencing problems at school, was referred for a court-ordered
psychological evaluation. She was in regular education classes in ninth grade and was failing every subject.
Candace had never been a stellar student but had always been passed to the next grade. Frequently, she
would curse at any of her teachers who called on her in class. She also got into fights with other students
and occasionally shoplifted. When she arrived for the evaluation, Candace immediately said that she hated
everything about school, including the teachers, the rest of the staff, the building, and the homework. Her
parents stated that they felt their daughter was picked on, because she was of a different race than the
teachers and most of the other students. When asked why she cursed at her teachers, Candace replied,
“They only call on me when I don’t know the answer. I don’t want to say, ‘I don’t know’ all of the time
and look like an idiot in front of my friends. The teachers embarrass me.” She was given a battery of tests,
including an IQ test. Her score on the IQ test was 68. What does Candace’s score say about her ability to
excel or even succeed in regular education classes without assistance?

DIG DEEPER

242 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

7.6 The Source of Intelligence
Learning Objectives

By the end of this section, you will be able to:
• Describe how genetics and environment affect intelligence
• Explain the relationship between IQ scores and socioeconomic status
• Describe the difference between a learning disability and a developmental disorder

A young girl, born of teenage parents, lives with her grandmother in rural Mississippi. They are poor—in
serious poverty—but they do their best to get by with what they have. She learns to read when she is just
3 years old. As she grows older, she longs to live with her mother, who now resides in Wisconsin. She
moves there at the age of 6 years. At 9 years of age, she is raped. During the next several years, several
different male relatives repeatedly molest her. Her life unravels. She turns to drugs and sex to fill the deep,
lonely void inside her. Her mother then sends her to Nashville to live with her father, who imposes strict
behavioral expectations upon her, and over time, her wild life settles once again. She begins to experience
success in school, and at 19 years old, becomes the youngest and first African-American female news
anchor (“Dates and Events,” n.d.). The woman—Oprah Winfrey—goes on to become a media giant known
for both her intelligence and her empathy.

HIGH INTELLIGENCE: NATURE OR NURTURE?
Where does high intelligence come from? Some researchers believe that intelligence is a trait inherited
from a person’s parents. Scientists who research this topic typically use twin studies to determine the
heritability of intelligence. The Minnesota Study of Twins Reared Apart is one of the most well-known
twin studies. In this investigation, researchers found that identical twins raised together and identical
twins raised apart exhibit a higher correlation between their IQ scores than siblings or fraternal twins
raised together (Bouchard, Lykken, McGue, Segal, & Tellegen, 1990). The findings from this study reveal
a genetic component to intelligence (Figure 7.16). At the same time, other psychologists believe that
intelligence is shaped by a child’s developmental environment. If parents were to provide their children
with intellectual stimuli from before they are born, it is likely that they would absorb the benefits of that
stimulation, and it would be reflected in intelligence levels.

Chapter 7 | Thinking and Intelligence 243

Figure 7.16 The correlations of IQs of unrelated versus related persons reared apart or together suggest a genetic
component to intelligence.

The reality is that aspects of each idea are probably correct. In fact, one study suggests that although
genetics seem to be in control of the level of intelligence, the environmental influences provide both
stability and change to trigger manifestation of cognitive abilities (Bartels, Rietveld, Van Baal, & Boomsma,
2002). Certainly, there are behaviors that support the development of intelligence, but the genetic
component of high intelligence should not be ignored. As with all heritable traits, however, it is not always
possible to isolate how and when high intelligence is passed on to the next generation.

Range of Reaction is the theory that each person responds to the environment in a unique way based
on his or her genetic makeup. According to this idea, your genetic potential is a fixed quantity, but
whether you reach your full intellectual potential is dependent upon the environmental stimulation you
experience, especially in childhood. Think about this scenario: A couple adopts a child who has average
genetic intellectual potential. They raise her in an extremely stimulating environment. What will happen
to the couple’s new daughter? It is likely that the stimulating environment will improve her intellectual
outcomes over the course of her life. But what happens if this experiment is reversed? If a child with
an extremely strong genetic background is placed in an environment that does not stimulate him: What
happens? Interestingly, according to a longitudinal study of highly gifted individuals, it was found that
“the two extremes of optimal and pathological experience are both represented disproportionately in the
backgrounds of creative individuals”; however, those who experienced supportive family environments
were more likely to report being happy (Csikszentmihalyi & Csikszentmihalyi, 1993, p. 187).

Another challenge to determining origins of high intelligence is the confounding nature of our human
social structures. It is troubling to note that some ethnic groups perform better on IQ tests than others—and
it is likely that the results do not have much to do with the quality of each ethnic group’s intellect.
The same is true for socioeconomic status. Children who live in poverty experience more pervasive,
daily stress than children who do not worry about the basic needs of safety, shelter, and food. These
worries can negatively affect how the brain functions and develops, causing a dip in IQ scores. Mark
Kishiyama and his colleagues determined that children living in poverty demonstrated reduced prefrontal
brain functioning comparable to children with damage to the lateral prefrontal cortex (Kishyama, Boyce,
Jimenez, Perry, & Knight, 2009).

The debate around the foundations and influences on intelligence exploded in 1969, when an educational
psychologist named Arthur Jensen published the article “How Much Can We Boost I.Q. and Achievement”
in the Harvard Educational Review. Jensen had administered IQ tests to diverse groups of students, and

244 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

his results led him to the conclusion that IQ is determined by genetics. He also posited that intelligence
was made up of two types of abilities: Level I and Level II. In his theory, Level I is responsible for rote
memorization, whereas Level II is responsible for conceptual and analytical abilities. According to his
findings, Level I remained consistent among the human race. Level II, however, exhibited differences
among ethnic groups (Modgil & Routledge, 1987). Jensen’s most controversial conclusion was that Level
II intelligence is prevalent among Asians, then Caucasians, then African Americans. Robert Williams was
among those who called out racial bias in Jensen’s results (Williams, 1970).

Obviously, Jensen’s interpretation of his own data caused an intense response in a nation that continued to
grapple with the effects of racism (Fox, 2012). However, Jensen’s ideas were not solitary or unique; rather,
they represented one of many examples of psychologists asserting racial differences in IQ and cognitive
ability. In fact, Rushton and Jensen (2005) reviewed three decades worth of research on the relationship
between race and cognitive ability. Jensen’s belief in the inherited nature of intelligence and the validity
of the IQ test to be the truest measure of intelligence are at the core of his conclusions. If, however, you
believe that intelligence is more than Levels I and II, or that IQ tests do not control for socioeconomic and
cultural differences among people, then perhaps you can dismiss Jensen’s conclusions as a single window
that looks out on the complicated and varied landscape of human intelligence.

In a related story, parents of African American students filed a case against the State of California in
1979, because they believed that the testing method used to identify students with learning disabilities
was culturally unfair as the tests were normed and standardized using white children (Larry P. v. Riles).
The testing method used by the state disproportionately identified African American children as mentally
retarded. This resulted in many students being incorrectly classified as “mentally retarded.” According to
a summary of the case, Larry P. v. Riles:

In violation of Title VI of the Civil Rights Act of 1964, the Rehabilitation Act of 1973, and the
Education for All Handicapped Children Act of 1975, defendants have utilized standardized
intelligence tests that are racially and culturally biased, have a discriminatory impact against
black children, and have not been validated for the purpose of essentially permanent placements
of black children into educationally dead-end, isolated, and stigmatizing classes for the so-
called educable mentally retarded. Further, these federal laws have been violated by defendants’
general use of placement mechanisms that, taken together, have not been validated and result in
a large over-representation of black children in the special E.M.R. classes. (Larry P. v. Riles, par.
6)

Once again, the limitations of intelligence testing were revealed.

WHAT ARE LEARNING DISABILITIES?
Learning disabilities are cognitive disorders that affect different areas of cognition, particularly language
or reading. It should be pointed out that learning disabilities are not the same thing as intellectual
disabilities. Learning disabilities are considered specific neurological impairments rather than global
intellectual or developmental disabilities. A person with a language disability has difficulty understanding
or using spoken language, whereas someone with a reading disability, such as dyslexia, has difficulty
processing what he or she is reading.

Often, learning disabilities are not recognized until a child reaches school age. One confounding aspect
of learning disabilities is that they often affect children with average to above-average intelligence. At
the same time, learning disabilities tend to exhibit comorbidity with other disorders, like attention-
deficit hyperactivity disorder (ADHD). Anywhere between 30–70% of individuals with diagnosed cases of
ADHD also have some sort of learning disability (Riccio, Gonzales, & Hynd, 1994). Let’s take a look at two
examples of common learning disabilities: dysgraphia and dyslexia.

Chapter 7 | Thinking and Intelligence 245

Dysgraphia
Children with dysgraphia have a learning disability that results in a struggle to write legibly. The physical
task of writing with a pen and paper is extremely challenging for the person. These children often have
extreme difficulty putting their thoughts down on paper (Smits-Engelsman & Van Galen, 1997). This
difficulty is inconsistent with a person’s IQ. That is, based on the child’s IQ and/or abilities in other
areas, a child with dysgraphia should be able to write, but can’t. Children with dysgraphia may also have
problems with spatial abilities.

Students with dysgraphia need academic accommodations to help them succeed in school. These
accommodations can provide students with alternative assessment opportunities to demonstrate what
they know (Barton, 2003). For example, a student with dysgraphia might be permitted to take an oral exam
rather than a traditional paper-and-pencil test. Treatment is usually provided by an occupational therapist,
although there is some question as to how effective such treatment is (Zwicker, 2005).

Dyslexia
Dyslexia is the most common learning disability in children. An individual with dyslexia exhibits an
inability to correctly process letters. The neurological mechanism for sound processing does not work
properly in someone with dyslexia. As a result, dyslexic children may not understand sound-letter
correspondence. A child with dyslexia may mix up letters within words and sentences—letter reversals,
such as those shown in Figure 7.17, are a hallmark of this learning disability—or skip whole words
while reading. A dyslexic child may have difficulty spelling words correctly while writing. Because of the
disordered way that the brain processes letters and sound, learning to read is a frustrating experience.
Some dyslexic individuals cope by memorizing the shapes of most words, but they never actually learn to
read (Berninger, 2008).

Figure 7.17 These written words show variations of the word “teapot” as written by individuals with dyslexia.

246 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

algorithm

analytical intelligence

anchoring bias

artificial

concept

availability heuristic

cognition

cognitive psychology

cognitive script

concept

confirmation bias

convergent thinking

creative intelligence

creativity

crystallized intelligence

cultural intelligence

divergent thinking

dysgraphia

dyslexia

emotional intelligence

event

schema

fluid intelligence

Flynn effect

functional fixedness

grammar

heuristic

hindsight bias

Key Terms

problem-solving strategy characterized by a specific set of instructions

aligned with academic problem solving and computations

faulty heuristic in which you fixate on a single aspect of a problem to find a solution

concept that is defined by a very specific set of characteristics

faulty heuristic in which you make a decision based on information readily
available to you

thinking, including perception, learning, problem solving, judgment, and memory

field of psychology dedicated to studying every aspect of how people think

set of behaviors that are performed the same way each time; also referred to as an event
schema

category or grouping of linguistic information, objects, ideas, or life experiences

faulty heuristic in which you focus on information that confirms your beliefs

providing correct or established answers to problems

ability to produce new products, ideas, or inventing a new, novel solution to a
problem

ability to generate, create, or discover new ideas, solutions, and possibilities

characterized by acquired knowledge and the ability to retrieve it

ability with which people can understand and relate to those in another culture

ability to think “outside the box” to arrive at novel solutions to a problem

learning disability that causes extreme difficulty in writing legibly

common learning disability in which letters are not processed properly by the brain

ability to understand emotions and motivations in yourself and others

set of behaviors that are performed the same way each time; also referred to as a cognitive
script

ability to see complex relationships and

solve problems

observation that each generation has a significantly higher IQ than the previous generation

inability to see an object as useful for any other use other than the one for which it
was intended

set of rules that are used to convey meaning through the use of a

lexicon

mental shortcut that saves time when solving a problem

belief that the event just experienced was predictable, even though it really wasn’t

Chapter 7 | Thinking and Intelligence 247

intelligence quotient

language
lexicon

mental set

morpheme

Multiple Intelligences Theory

natural concept

norming

overgeneralization

phoneme

practical intelligence

problem-solving strategy

prototype

range of reaction

representative bias

representative sample

role schema

schema

semantics

standard deviation

standardization

syntax

trial and error

triarchic theory of intelligence

working backwards

(also, IQ) score on a test designed to measure intelligence

communication system that involves using words to transmit information from one individual
to another

the words of a given language

continually using an old solution to a problem without results

smallest unit of language that conveys some type of meaning

Gardner’s theory that each person possesses at least eight types of
intelligence

mental groupings that are created “naturally” through your experiences

administering a test to a large population so data can be collected to reference the normal scores
for a population and its groups

extension of a rule that exists in a given language to an exception to the rule

basic sound unit of a given language

aka “street smarts”

method for solving problems

best representation of a concept

each person’s response to the environment is unique based on his or her genetic make-
up

faulty heuristic in which you stereotype someone or something without a valid basis
for your judgment

subset of the population that accurately represents the general population

set of expectations that define the behaviors of a person occupying a particular role

(plural = schemata) mental construct consisting of a cluster or collection of related concepts

process by which we derive meaning from morphemes and words

measure of variability that describes the difference between a set of scores and their
mean

method of testing in which administration, scoring, and interpretation of results are
consistent

manner by which words are organized into sentences

problem-solving strategy in which multiple solutions are attempted until the correct one
is found

Sternberg’s theory of intelligence; three facets of intelligence: practical,
creative, and analytical

heuristic in which you begin to solve a problem by focusing on the end result

248 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Summary

7.1 What Is Cognition?
In this section, you were introduced to cognitive psychology, which is the study of cognition, or the brain’s
ability to think, perceive, plan, analyze, and remember. Concepts and their corresponding prototypes help
us quickly organize our thinking by creating categories into which we can sort new information. We also
develop schemata, which are clusters of related concepts. Some schemata involve routines of thought and
behavior, and these help us function properly in various situations without having to “think twice” about
them. Schemata show up in social situations and routines of daily behavior.

7.2 Language
Language is a communication system that has both a lexicon and a system of grammar. Language
acquisition occurs naturally and effortlessly during the early stages of life, and this acquisition occurs in a
predictable sequence for individuals around the world. Language has a strong influence on thought, and
the concept of how language may influence cognition remains an area of study and debate in psychology.

7.3 Problem Solving
Many different strategies exist for solving problems. Typical strategies include trial and error, applying
algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem
into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to
problem solving include a mental set, functional fixedness, and various biases that can cloud decision
making skills.

7.4 What Are Intelligence and Creativity?
Intelligence is a complex characteristic of cognition. Many theories have been developed to explain what
intelligence is and how it works. Sternberg generated his triarchic theory of intelligence, whereas Gardner
posits that intelligence is comprised of many factors. Still others focus on the importance of emotional
intelligence. Finally, creativity seems to be a facet of intelligence, but it is extremely difficult to measure
objectively.

7.5 Measures of Intelligence
In this section, we learned about the history of intelligence testing and some of the challenges regarding
intelligence testing. Intelligence tests began in earnest with Binet; Wechsler later developed intelligence
tests that are still in use today: the WAIS-IV and WISC-V. The Bell curve shows the range of scores that
encompass average intelligence as well as standard deviations.

7.6 The Source of Intelligence
Genetics and environment affect intelligence and the challenges of certain learning disabilities. The
intelligence levels of all individuals seem to benefit from rich stimulation in their early environments.
Highly intelligent individuals, however, may have a built-in resiliency that allows them to overcome
difficult obstacles in their upbringing. Learning disabilities can cause major challenges for children who
are learning to read and write. Unlike developmental disabilities, learning disabilities are strictly
neurological in nature and are not related to intelligence levels. Students with dyslexia, for example,
may have extreme difficulty learning to read, but their intelligence levels are typically average or above
average.

Chapter 7 | Thinking and Intelligence 249

Review Questions

1. Cognitive psychology is the branch of
psychology that focuses on the study of ________.

a. human development
b. human thinking
c. human behavior
d. human society

2. Which of the following is an example of a
prototype for the concept of leadership on an
athletic team?

a. the equipment manager
b. the scorekeeper
c. the team captain
d. the quietest member of the team

3. Which of the following is an example of an
artificial concept?

a. mammals
b. a triangle’s area
c. gemstones
d. teachers

4. An event schema is also known as a cognitive
________.

a. stereotype
b. concept
c. script
d. prototype

5. ________ provides general principles for
organizing words into meaningful sentences.

a. Linguistic determinism
b. Lexicon
c. Semantics
d. Syntax

6. ________ are the smallest unit of language that
carry meaning.

a. Lexicon
b. Phonemes
c. Morphemes
d. Syntax

7. The meaning of words and phrases is
determined by applying the rules of ________.

a. lexicon
b. phonemes
c. overgeneralization
d. semantics

8. ________ is (are) the basic sound units of a
spoken language.

a. Syntax
b. Phonemes
c. Morphemes
d. Grammar

9. A specific formula for solving a problem is
called ________.

a. an algorithm
b. a heuristic
c. a mental set
d. trial and error

10. A mental shortcut in the form of a general
problem-solving framework is called ________.

a. an algorithm
b. a heuristic
c. a mental set
d. trial and error

11. Which type of bias involves becoming fixated
on a single trait of a problem?

a. anchoring bias
b. confirmation bias
c. representative bias
d. availability bias

12. Which type of bias involves relying on a false
stereotype to make a decision?

a. anchoring bias
b. confirmation bias
c. representative bias
d. availability bias

13. Fluid intelligence is characterized by
________.

a. being able to recall information
b. being able to create new products
c. being able to understand and communicate

with different cultures
d. being able to see complex relationships and

solve problems

250 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

14. Which of the following is not one of
Gardner’s Multiple Intelligences?

a. creative
b. spatial
c. linguistic
d. musical

15. Which theorist put forth the triarchic theory
of intelligence?

a. Goleman
b. Gardner
c. Sternberg
d. Steitz

16. When you are examining data to look for
trends, which type of intelligence are you using
most?

a. practical
b. analytical
c. emotional
d. creative

17. In order for a test to be normed and
standardized it must be tested on ________.

a. a group of same-age peers
b. a representative sample
c. children with mental disabilities
d. children of average intelligence

18. The mean score for a person with an average
IQ is ________.

a. 70
b. 130
c. 85
d. 100

19. Who developed the IQ test most widely used
today?

a. Sir Francis Galton
b. Alfred Binet
c. Louis Terman
d. David Wechsler

20. The DSM-5 now uses ________ as a diagnostic
label for what was once referred to as mental
retardation.

a. autism and developmental disabilities
b. lowered intelligence
c. intellectual disability
d. cognitive disruption

21. Where does high intelligence come from?
a. genetics
b. environment
c. both A and B
d. neither A nor B

22. Arthur Jensen believed that ________.
a. genetics was solely responsible for

intelligence
b. environment was solely responsible for

intelligence
c. intelligence level was determined by race
d. IQ tests do not take socioeconomic status

into account

23. What is a learning disability?
a. a developmental disorder
b. a neurological disorder
c. an emotional disorder
d. an intellectual disorder

24. Which of the following statements is true?
a. Poverty always affects whether individuals

are able to reach their full intellectual
potential.

b. An individual’s intelligence is determined
solely by the intelligence levels of his
siblings.

c. The environment in which an individual is
raised is the strongest predictor of her
future intelligence

d. There are many factors working together to
influence an individual’s intelligence level.

Critical Thinking Questions

25. Describe an event schema that you would notice at a sporting event.

26. Explain why event schemata have so much power over human behavior.

27. How do words not only represent our thoughts but also represent our values?

Chapter 7 | Thinking and Intelligence 251

28. How could grammatical errors actually be indicative of language acquisition in children?

29. How do words not only represent our thoughts but also represent our values?

30. What is functional fixedness and how can overcoming it help you solve problems?

31. How does an algorithm save you time and energy when solving a problem?

32. Describe a situation in which you would need to use practical intelligence.

33. Describe a situation in which cultural intelligence would help you communicate better.

34. Why do you think different theorists have defined intelligence in different ways?

35. Compare and contrast the benefits of the Stanford-Binet IQ test and Wechsler’s IQ tests.

36. What evidence exists for a genetic component to an individual’s IQ?

37. Describe the relationship between learning disabilities and intellectual disabilities to intelligence.

Personal Application Questions

38. Describe a natural concept that you know fully but that would be difficult for someone else to
understand and explain why it would be difficult.

39. Can you think of examples of how language affects cognition?

40. Which type of bias do you recognize in your own decision making processes? How has this bias
affected how you’ve made decisions in the past and how can you use your awareness of it to improve your
decisions making skills in the future?

41. What influence do you think emotional intelligence plays in your personal life?

42. In thinking about the case of Candace described earlier, do you think that Candace benefitted or
suffered as a result of consistently being passed on to the next grade?

43. Do you believe your level of intelligence was improved because of the stimuli in your childhood
environment? Why or why not?

252 Chapter 7 | Thinking and Intelligence

This OpenStax book is available for free at https://cnx.org/content/col11629/1.5

Chapter 8

Memory

Figure 8.1 Photographs can trigger our memories and bring past experiences back to life. (credit: modification of
work by Cory Zanker)

Chapter Outline
8.1 How Memory Functions
8.2 Parts of the Brain Involved with Memory
8.3 Problems with Memory
8.4 Ways to Enhance Memory

Introduction
We may be top-notch learners, but if we don’t have a way to store what we’ve learned, what good is the
knowledge we’ve gained?

Take a few minutes to imagine what your day might be like if you could not remember anything you had
learned. You would have to figure out how to get dressed. What clothing should you wear, and how do
buttons and zippers work? You would need someone to teach you how to brush your teeth and tie your
shoes. Who would you ask for help with these tasks, since you wouldn’t recognize the faces of these people
in your house? Wait . . . is this even your house? Uh oh, your stomach begins to rumble and you feel
hungry. You’d like something to eat, but you don’t know where the food is kept or even how to prepare it.
Oh dear, this is getting confusing. Maybe it would be best just go back to bed. A bed . . . what is a bed?

We have an amazing capacity for memory, but how, exactly, do we process and store information? Are
there different kinds of memory, and if so, what characterizes the different types? How, exactly, do we
retrieve our memories? And why do we forget? This chapter will explore these questions as we learn about
memory.

Chapter 8 | Memory 253

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP