Book review

See attachment for instruction

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

EDUC

Book Review Instructions

For this assignment, you will write a 5-page book review in current APA format that focuses on the required course textbook, Make It Stick: The Science of Successful Learning. You must summarize the premise of the book, take a stance for or against the key points made, and discuss implications for the field of education. The paper must include at least 4 references to the assignment textbook in addition to the Bible.

Please use the following format in preparing your book review:

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

1. Summary. Summarize what you have read, boiling the book down into 500 words. Prove you comprehend the readings by writing a no-nonsense summary. The abstract is not a commentary or listing of topics but rather an objective summary from the reader’s viewpoint. Summary here means “clear and concise”. This section should include a minimum of 2 APA citations to the text being reviewed.

2. Concrete Response. In no less than 300 words, relate a personal life experience that this book triggered in your memory. Relate your story in first person, describing action, and quoting exact words you remember hearing or saying. In the teaching style of Jesus, this is a do-it-yourself parable, case study, and/or confession. You will remember almost nothing you have read unless you make this critical, personal connection.

3. Reflection. This is the critical thinking part of the review. In no less than 300 words, describe what questions pop-up for you in response to what you have read. Keep a rough-note sheet at hand as you read. Outsmart the author by asking better questions than he/she raised in the book. Tell how the author could have made the book better or more appealing to those in your field of service. One way to begin this section is by stating what bothered you most about the book. This is not a place to provide an endorsement or affirmation of the book. This section should include a minimum of 2 APA citations to the text being reviewed.

4.

Action. In 500 words provide 2 actions that describe what changes you are going to do or how the book’s ideas/concepts will be applied in your professional life as a result of your reading. Actions should be measurable and reveal a commitment to specific time, specific people, and identified steps.

5. Please provide an APA style title page, citations, and reference page. These do not count towards the 5-page minimum requirement.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

M A K E I T ST ICK
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

make it stick
The Science of Successful Learning
Peter C. Brown
Henry L. Roediger III
Mark A. McDaniel
THE BELK NA P PRES S of H A RVA R D U NI V ERSIT Y PR ES S
Cambridge, Massachusetts
London, En gland
2014
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Copyright © 2014 by Peter C. Brown, Henry L. Roediger III,
Mark A. McDaniel
All rights reserved
Printed in the United States of America
Library of Congress Cataloging- in- Publication Data
Brown, Peter C.
Make it stick : the science of successful learning / Peter C. Brown,
Henry L. Roediger, Mark A. McDaniel.
pages cm
Includes bibliographical references and index.
ISBN 978- 0- 674- 72901- 8
1. Learning— Research. 2. Cognition— Research. 3. Study skills.
I. Title.
LB1060.B768 2014
370.15’23—dc23
2013038420
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Memory is the mother of all wisdom.
Aeschylus
Prometheus Bound
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Contents
Preface ix
1 Learning Is Misunderstood 1
2 To Learn, Retrieve 23
3 Mix Up Your Practice 46
4 Embrace Diffi culties 67
5 Avoid Illusions of Knowing 102
6 Get Beyond Learning Styles 131
7 Increase Your Abilities 162
8 Make It Stick 200
Notes 257
Suggested Reading 285
Ac know ledg ments 289
Index 295
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

ix
People generally are going about learn-
ing in the wrong ways. Empirical research into how we learn
and remember shows that much of what we take for gospel
about how to learn turns out to be largely wasted effort. Even
college and medical students— whose main job is learning—
rely on study techniques that are far from optimal. At the same
time, this fi eld of research, which goes back 125 years but has
been particularly fruitful in recent years, has yielded a body of
insights that constitute a growing science of learning: highly
effective, evidence- based strategies to replace less effective but
widely accepted practices that are rooted in theory, lore, and
intuition. But there’s a catch: the most effective learning strate-
gies are not intuitive.
Two of us, Henry Roediger and Mark McDaniel, are cog-
nitive scientists who have dedicated our careers to the study
of learning and memory. Peter Brown is a storyteller. We have
Preface
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Preface ê x
teamed up to explain how learning and memory work, and
we do this less by reciting the research than by telling stories
of people who have found their way to mastery of complex
knowledge and skills. Through these examples we illuminate
the principles of learning that the research shows are highly
effective. This book arose in part from a collaboration
among eleven cognitive psychologists. In 2002, the James S.
McDonnell Foundation of St. Louis, Missouri, in an effort
to better bridge the gap between basic knowledge on learn-
ing in cognitive psychology and its application in education,
awarded a research grant “Applying Cognitive Psychology
to Enhance Educational Practice” to Roediger and McDaniel
and nine others, with Roediger as the principal investigator.
The team collaborated for ten years on research to translate
cognitive science into educational science, and in many re-
spects this book is a direct result of that work. The research-
ers and many of their studies are cited in the book, the notes,
and our acknowledgments. Roediger’s and McDaniel’s work
is also supported by several other funders, and McDaniel is
the co-director of Washington University’s Center for Inte-
grative Research in Learning and Memory.
Most books deal with topics serially— they cover one topic,
move on to the next, and so on. We follow this strategy in the
sense that each chapter addresses new topics, but we also ap-
ply two of the primary learning principles in the book: spaced
repetition of key ideas, and the interleaving of different but
related topics. If learners spread out their study of a topic,
returning to it periodically over time, they remember it better.
Similarly, if they interleave the study of different topics, they
learn each better than if they had studied them one at a time in
sequence. Thus we unabashedly cover key ideas more than
once, repeating principles in different contexts across the book.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Preface ê xi
The reader will remember them better and use them more ef-
fectively as a result.
This is a book about what people can do for themselves
right now in order to learn better and remember longer. The
responsibility for learning rests with every individual. Teach-
ers and coaches, too, can be more effective right now by help-
ing students understand these principles and by designing them
into the learning experience. This is not a book about how
education policy or the school system ought to be reformed.
Clearly, though, there are policy implications. For example,
college professors at the forefront of applying these strategies
in the classroom have experimented with their potential for
narrowing the achievement gap in the sciences, and the results
of those studies are eye opening.
We write for students and teachers, of course, and for all
readers for whom effective learning is a high priority: for train-
ers in business, industry, and the military; for leaders of profes-
sional associations offering in- service training to their mem-
bers; and for coaches. We also write for lifelong learners nearing
middle age or older who want to hone their skills so as to stay
in the game.
While much remains to be known about learning and its
neural underpinnings, a large body of research has yielded
principles and practical strategies that can be put to work im-
mediately, at no cost, and to great effect.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

M A K E I T ST ICK
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

1
Early in his career as a pi lot, Matt
Brown was fl ying a twin- engine Cessna northeast out of Har-
lingen, Texas, when he noticed a drop in oil pressure in his
right engine. He was alone, fl ying through the night at eleven
thousand feet, making a hotshot freight run to a plant in Ken-
tucky that had shut down its manufacturing line awaiting
product parts for assembly.
He reduced altitude and kept an eye on the oil gauge, hop-
ing to fl y as far as a planned fuel stop in Louisiana, where he
could ser vice the plane, but the pressure kept falling. Matt
has been messing around with piston engines since he was
old enough to hold a wrench, and he knew he had a problem.
He ran a mental checklist, fi guring his options. If he let the oil
pressure get too low he risked the engine’s seizing up. How
much further could he fl y before shutting it down? What
would happen when he did? He’d lose lift on the right side,
1
Learning Is Misunderstood
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 2
but could he stay aloft? He reviewed the tolerances he’d
memorized for the Cessna 401. Loaded, the best you could do
on one engine was slow your descent. But he had a light load,
and he’d burned through most of his fuel. So he shut down
the ailing right engine, feathered the prop to reduce drag, in-
creased power on the left, fl ew with opposite rudder, and
limped another ten miles toward his intended stop. There, he
made his approach in a wide left- hand turn, for the simple but
critical reason that without power on his right side it was
only from a left- hand turn that he still had the lift needed to
level out for a touchdown.
While we don’t need to understand each of the actions Matt
took, he certainly needed to, and his ability to work himself
out of a jam illustrates what we mean in this book when we
talk about learning: we mean acquiring knowledge and skills
and having them readily available from memory so you can
make sense of future problems and opportunities.
There are some immutable aspects of learning that we can
probably all agree on:
First, to be useful, learning requires memory, so what we’ve
learned is still there later when we need it.
Second, we need to keep learning and remembering all our
lives. We can’t advance through middle school without some
mastery of language arts, math, science, and social studies.
Getting ahead at work takes mastery of job skills and diffi cult
colleagues. In retirement, we pick up new interests. In our
dotage, we move into simpler housing while we’re still able
to adapt. If you’re good at learning, you have an advantage in
life.
Third, learning is an acquired skill, and the most effective
strategies are often counterintuitive.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 3
Claims We Make in This Book
You may not agree with the last point, but we hope to per-
suade you of it. Here, more or less unadorned in list form, are
some of the principal claims we make in support of our argu-
ment. We set them forth more fully in the chapters that follow.
Learning is deeper and more durable when it’s effortful.
Learning that’s easy is like writing in sand, here today and
gone tomorrow.
We are poor judges of when we are learning well and when
we’re not. When the going is harder and slower and it doesn’t
feel productive, we are drawn to strategies that feel more
fruitful, unaware that the gains from these strategies are often
temporary.
Rereading text and massed practice of a skill or new knowl-
edge are by far the preferred study strategies of learners of all
stripes, but they’re also among the least productive. By massed
practice we mean the single- minded, rapid- fi re repetition of
something you’re trying to burn into memory, the “practice-
practice- practice” of conventional wisdom. Cramming for ex-
ams is an example. Rereading and massed practice give rise to
feelings of fl uency that are taken to be signs of mastery, but for
true mastery or durability these strategies are largely a waste
of time.
Retrieval practice— recalling facts or concepts or events
from memory— is a more effective learning strategy than re-
view by rereading. Flashcards are a simple example. Retrieval
strengthens the memory and interrupts forgetting. A single,
simple quiz after reading a text or hearing a lecture produces
better learning and remembering than rereading the text or
reviewing lecture notes. While the brain is not a muscle that
gets stronger with exercise, the neural pathways that make
up a body of learning do get stronger, when the memory is
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 4
retrieved and the learning is practiced. Periodic practice ar-
rests forgetting, strengthens retrieval routes, and is essential
for hanging onto the knowledge you want to gain.
When you space out practice at a task and get a little rusty
between sessions, or you interleave the practice of two or
more subjects, retrieval is harder and feels less productive, but
the effort produces longer lasting learning and enables more
versatile application of it in later settings.
Trying to solve a problem before being taught the solution
leads to better learning, even when errors are made in the
attempt.
The pop u lar notion that you learn better when you receive
instruction in a form consistent with your preferred learning
style, for example as an auditory or visual learner, is not sup-
ported by the empirical research. People do have multiple
forms of intelligence to bring to bear on learning, and you
learn better when you “go wide,” drawing on all of your apti-
tudes and resourcefulness, than when you limit instruction or
experience to the style you fi nd most amenable.
When you’re adept at extracting the underlying principles
or “rules” that differentiate types of problems, you’re more
successful at picking the right solutions in unfamiliar situations.
This skill is better acquired through interleaved and varied
practice than massed practice. For instance, interleaving prac-
tice at computing the volumes of different kinds of geometric
solids makes you more skilled at picking the right solution
when a later test presents a random solid. Interleaving the
identifi cation of bird types or the works of oil paint ers im-
proves your ability both to learn the unifying attributes within
a type and to differentiate between types, improving your
skill at categorizing new specimens you encounter later.
We’re all susceptible to illusions that can hijack our judg-
ment of what we know and can do. Testing helps calibrate
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 5
our judgments of what we’ve learned. A pi lot who is respond-
ing to a failure of hydraulic systems in a fl ight simulator dis-
covers quickly whether he’s on top of the corrective proce-
dures or not. In virtually all areas of learning, you build better
mastery when you use testing as a tool to identify and bring
up your areas of weakness.
All new learning requires a foundation of prior knowledge.
You need to know how to land a twin engine plane on two
engines before you can learn to land it on one. To learn trigo-
nometry, you need to remember your algebra and geometry. To
learn cabinetmaking, you need to have mastered the proper-
ties of wood and composite materials, how to join boards, cut
rabbets, rout edges, and miter corners.
In a cartoon by the Far Side cartoonist Gary Larson, a bug-
eyed school kid asks his teacher, “Mr. Osborne, can I be ex-
cused? My brain is full!” If you’re just engaging in mechanical
repetition, it’s true, you quickly hit the limit of what you can
keep in mind. However, if you practice elaboration, there’s no
known limit to how much you can learn. Elaboration is the
pro cess of giving new material meaning by expressing it in
your own words and connecting it with what you already
know. The more you can explain about the way your new
learning relates to your prior knowledge, the stronger your
grasp of the new learning will be, and the more connections
you create that will help you remember it later. Warm air can
hold more moisture than cold air; to know that this is true in
your own experience, you can think of the drip of water from
the back of an air conditioner or the way a stifl ing summer
day turns cooler out the back side of a sudden thunderstorm.
Evaporation has a cooling effect: you know this because a
humid day at your uncle’s in Atlanta feels hotter than a dry
one at your cousin’s in Phoenix, where your sweat disap-
pears even before your skin feels damp. When you study the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 6
principles of heat transfer, you understand conduction from
warming your hands around a hot cup of cocoa; radiation
from the way the sun pools in the den on a wintry day; con-
vection from the life- saving blast of A/C as your uncle squires
you slowly through his favorite back alley haunts of Atlanta.
Putting new knowledge into a larger context helps learn-
ing. For example, the more of the unfolding story of history
you know, the more of it you can learn. And the more ways
you give that story meaning, say by connecting it to your un-
derstanding of human ambition and the untidiness of fate, the
better the story stays with you. Likewise, if you’re trying to
learn an abstraction, like the principle of angular momentum,
it’s easier when you ground it in something concrete that you
already know, like the way a fi gure skater’s rotation speeds up
as she draws her arms to her chest.
People who learn to extract the key ideas from new mate-
rial and or ga nize them into a mental model and connect that
model to prior knowledge show an advantage in learning com-
plex mastery. A mental model is a mental repre sen ta tion of
some external reality.1 Think of a baseball batter waiting for
a pitch. He has less than an instant to decipher whether it’s a
curveball, a changeup, or something else. How does he do it?
There are a few subtle signals that help: the way the pitcher
winds up, the way he throws, the spin of the ball’s seams. A
great batter winnows out all the extraneous perceptual dis-
tractions, seeing only these variations in pitches, and through
practice he forms distinct mental models based on a different
set of cues for each kind of pitch. He connects these models to
what he knows about batting stance, strike zone, and swing-
ing so as to stay on top of the ball. These he connects to men-
tal models of player positions: if he’s got guys on fi rst and
second, maybe he’ll sacrifi ce to move the runners ahead. If
he’s got men on fi rst and third and there is one out, he’s got to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 7
keep from hitting into a double play while still hitting to score
the runner. His mental models of player positions connect to
his models of the opposition (are they playing deep or shal-
low?) and to the signals fl ying around from the dugout to the
base coaches to him. In a great at- bat, all these pieces come
together seamlessly: the batter connects with the ball and
drives it through a hole in the outfi eld, buying the time to get
on fi rst and advance his men. Because he has culled out all but
the most important elements for identifying and responding
to each kind of pitch, constructed mental models out of that
learning, and connected those models to his mastery of the
other essential elements of this complex game, an expert player
has a better chance of scoring runs than a less experienced
one who cannot make sense of the vast and changeable infor-
mation he faces every time he steps up to the plate.
Many people believe that their intellectual ability is hard-
wired from birth, and that failure to meet a learning challenge
is an indictment of their native ability. But every time you learn
something new, you change the brain— the residue of your
experiences is stored. It’s true that we start life with the gift of
our genes, but it’s also true that we become capable through
the learning and development of mental models that enable
us to reason, solve, and create. In other words, the elements
that shape your intellectual abilities lie to a surprising extent
within your own control. Understanding that this is so en-
ables you to see failure as a badge of effort and a source of
useful information— the need to dig deeper or to try a differ-
ent strategy. The need to understand that when learning is
hard, you’re doing important work. To understand that striv-
ing and setbacks, as in any action video game or new BMX
bike stunt, are essential if you are to surpass your current level
of per for mance toward true expertise. Making mistakes and
correcting them builds the bridges to advanced learning.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 8
Empirical Evidence versus Theory,
Lore, and Intuition
Much of how we structure training and schooling is based on
learning theories that have been handed down to us, and
these are shaped by our own sense of what works, a sensibil-
ity drawn from our personal experiences as teachers, coaches,
students, and mere humans at large on the earth. How we
teach and study is largely a mix of theory, lore, and intuition.
But over the last forty years and more, cognitive psychologists
have been working to build a body of evidence to clarify what
works and to discover the strategies that get results.
Cognitive psychology is the basic science of understanding
how the mind works, conducting empirical research into how
people perceive, remember, and think. Many others have their
hands in the puzzle of learning as well. Developmental and
educational psychologists are concerned with theories of
human development and how they can be used to shape the
tools of education— such as testing regimes, instructional or-
ganizers (for example topic outlines and schematic illustra-
tions), and resources for special groups like those in remedial
and gifted education. Neuroscientists, using new imaging tech-
niques and other tools, are advancing our understanding of
brain mechanisms that underlie learning, but we’re still a very
long way from knowing what neuroscience will tell us about
how to improve education.
How is one to know whose advice to take on how best to
go about learning?
It’s wise to be skeptical. Advice is easy to fi nd, only a few
mouse- clicks away. Yet not all advice is grounded in research—
far from it. Nor does all that passes as research meet the stan-
dards of science, such as having appropriate control condi-
tions to assure that the results of an investigation are objective
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 9
and generalizable. The best empirical studies are experimental
in nature: the researcher develops a hypothesis and then tests
it through a set of experiments that must meet rigorous crite-
ria for design and objectivity. In the chapters that follow, we
have distilled the fi ndings of a large body of such studies that
have stood up under review by the scientifi c community be-
fore being published in professional journals. We are collabo-
rators in some of these studies, but not the lion’s share. Where
we’re offering theory rather than scientifi cally validated re-
sults, we say so. To make our points we use, in addition to
tested science, anecdotes from people like Matt Brown whose
work requires mastery of complex knowledge and skills, sto-
ries that illustrate the underlying principles of how we learn
and remember. Discussion of the research studies themselves
is kept to a minimum, but you will fi nd many of them cited in
the notes at the end of the book if you care to dig further.
People Misunderstand Learning
It turns out that much of what we’ve been doing as teachers
and students isn’t serving us well, but some comparatively
simple changes could make a big difference. People commonly
believe that if you expose yourself to something enough times—
say, a textbook passage or a set of terms from an eighth grade
biology class— you can burn it into memory. Not so. Many
teachers believe that if they can make learning easier and faster,
the learning will be better. Much research turns this belief on
its head: when learning is harder, it’s stronger and lasts longer.
It’s widely believed by teachers, trainers, and coaches that the
most effective way to master a new skill is to give it dogged,
single- minded focus, practicing over and over until you’ve got
it down. Our faith in this runs deep, because most of us see
fast gains during the learning phase of massed practice. What’s
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 10
apparent from the research is that gains achieved during
massed practice are transitory and melt away quickly.
The fi nding that rereading textbooks is often labor in vain
ought to send a chill up the spines of educators and learners,
because it’s the number one study strategy of most people—
including more than 80 percent of college students in some
surveys—and is central in what we tell ourselves to do during
the hours we dedicate to learning. Rereading has three strikes
against it. It is time consuming. It doesn’t result in durable
memory. And it often involves a kind of unwitting self-
deception, as growing familiarity with the text comes to feel
like mastery of the content. The hours immersed in rereading
can seem like due diligence, but the amount of study time is
no mea sure of mastery.2
You needn’t look far to fi nd training systems that lean
heavily on the conviction that mere exposure leads to learn-
ing. Consider Matt Brown, the pi lot. When Matt was ready
to advance from piston planes, he had a whole new body of
knowledge to master in order to get certifi ed for the business
jet he was hired to pi lot. We asked him to describe this pro-
cess. His employer sent him to eigh teen days of training, ten
hours a day, in what Matt called the “fi re hose” method of
instruction. The fi rst seven days straight were spent in the
classroom being instructed in all the plane’s systems: electri-
cal, fuel, pneumatics, and so on, how these systems operated
and interacted, and all their fail- safe tolerances like pressures,
weights, temperatures, and speeds. Matt is required to have at
his immediate command about eighty different “memory ac-
tion items”— actions to take without hesitation or thought in
order to stabilize the plane the moment any one of a dozen or
so unexpected events occur. It might be a sudden decompres-
sion, a thrust reverser coming unlocked in fl ight, an engine
failure, an electrical fi re.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 11
Matt and his fellow pi lots gazed for hours at mind-
numbing PowerPoint illustrations of their airplane’s principal
systems. Then something interesting happened.
“About the middle of day fi ve,” Matt said, “they fl ash a
schematic of the fuel system on the screen, with its pressure
sensors, shutoff valves, ejector pumps, bypass lines, and on
and on, and you’re struggling to stay focused. Then this one
instructor asks us, ‘Has anybody here had the fuel fi lter by-
pass light go on in fl ight?’ This pi lot across the room raises his
hand. So the instructor says, ‘Tell us what happened,’ and sud-
denly you’re thinking, Whoa, what if that was me?
“So, this guy was at 33,000 feet or something and he’s
about to lose both engines because he got fuel without anti-
freeze in it and his fi lters are clogging with ice. You hear that
story and, believe me, that schematic comes to life and sticks
with you. Jet fuel can commonly have a little water in it, and
when it gets cold at high altitude, the water will condense out,
and it can freeze and block the line. So whenever you refuel,
you make good and sure to look for a sign on the fuel truck
saying the fuel has Prist in it, which is an antifreeze. And if you
ever see that light go on in fl ight, you’re going to get yourself
down to some warmer air in a hurry.”3 Learning is stronger
when it matters, when the abstract is made concrete and
personal.
Then the nature of Matt’s instruction shifted. The next
eleven days were spent in a mix of classroom and fl ight simu-
lator training. Here, Matt described the kind of active en-
gagement that leads to durable learning, as the pi lots had to
grapple with their aircraft to demonstrate mastery of stan-
dard operating procedures, respond to unexpected situations,
and drill on the rhythm and physical memory of the move-
ments that are required in the cockpit for dealing with them.
A fl ight simulator provides retrieval practice, and the practice
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 12
is spaced, interleaved, and varied and involves as far as pos-
sible the same mental pro cesses Matt will invoke when he’s at
altitude. In a simulator, the abstract is made concrete and
personal. A simulator is also a series of tests, in that it helps
Matt and his instructors calibrate their judgment of where he
needs to focus to bring up his mastery.
In some places, like Matt Brown’s fl ight simulator, teachers
and trainers have found their way to highly effective learning
techniques, yet in virtually any fi eld, these techniques tend to
be the exception, and “fi re hose” lectures (or their equivalent)
are too often the norm.
In fact, what students are advised to do is often plain wrong.
For instance, study tips published on a website at George
Mason University include this advice: “The key to learning
something well is repetition; the more times you go over the
material the better chance you have of storing it permanently.”4
Another, from a Dartmouth College website, suggests: “If you
intend to remember something, you probably will.”5 A pub-
lic ser vice piece that runs occasionally in the St. Louis Post-
Dispatch offering study advice shows a kid with his nose
buried in a book. “Concentrate,” the caption reads. “Focus on
one thing and one thing only. Repeat, repeat, repeat! Repeat-
ing what you have to remember can help burn it into your
memory.”6 Belief in the power of rereading, intentionality, and
repetition is pervasive, but the truth is you usually can’t em-
bed something in memory simply by repeating it over and
over. This tactic might work when looking up a phone num-
ber and holding it in your mind while punching it into your
phone, but it doesn’t work for durable learning.
A simple example, reproduced on the Internet (search
“penny memory test”), presents a dozen different images of a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 13
common penny, only one of which is correct. As many times
as you’ve seen a penny, you’re hard pressed to say with confi –
dence which one it is. Similarly, a recent study asked faculty
and students who worked in the Psychology Building at UCLA
to identify the fi re extinguisher closest to their offi ce. Most
failed the test. One professor, who had been at UCLA for
twenty- fi ve years, left his safety class and decided to look for
the fi re extinguisher closest to his offi ce. He discovered that it
was actually right next to his offi ce door, just inches from the
doorknob he turned every time he went into his offi ce. Thus,
in this case, even years of repetitive exposure did not result in
his learning where to grab the closest extinguisher if his waste-
basket caught fi re.7
Early Evidence
The fallacy in thinking that repetitive exposure builds mem-
ory has been well established through a series of investiga-
tions going back to the mid- 1960s, when the psychologist
Endel Tulving at the University of Toronto began testing people
on their ability to remember lists of common En glish nouns. In
a fi rst phase of the experiment, the participants simply read a
list of paired items six times (for example, a pair on the list
might be “chair— 9”); they did not expect a memory test. The
fi rst item in each pair was always a noun. After reading the
listed pairs six times, participants were then told that they
would be getting a list of nouns that they would be asked to
remember. For one group of people, the nouns were the same
ones they had just read six times in the prior reading phase;
for another group, the nouns to be learned were different from
those they had previously read. Remarkably, Tulving found
that the two groups’ learning of the nouns did not differ— the
learning curves were statistically indistinguishable. Intuition
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 14
would suggest otherwise, but prior exposure did not aid later
recall. Mere repetition did not enhance learning. Subsequent
studies by many researchers have pressed further into ques-
tions of whether repeated exposure or longer periods of hold-
ing an idea in mind contribute to later recall, and these studies
have confi rmed and elaborated on the fi ndings that repetition
by itself does not lead to good long- term memory.8
These results led researchers to investigate the benefi ts of
rereading texts. In a 2008 article in Contemporary Educa-
tional Psychology, Washington University scientists reported
on a series of studies they conducted at their own school and
at the University of New Mexico to shed light on rereading as
a strategy to improve understanding and memory of prose.
Like most research, these studies stood on the shoulders of
earlier work by others; some showed that when the same text
is read multiple times the same inferences are made and the
same connections between topics are formed, and others sug-
gested modest benefi ts from rereading. These benefi ts had been
found in two different situations. In the fi rst, some students
read and immediately reread study material, whereas other
students read the material only once. Both groups took an im-
mediate test after reading, and the group who had read twice
performed a bit better than the group who had read once.
However, on a delayed test the benefi t of immediate rereading
had worn off, and the rereaders performed at the same level as
the one- time readers. In the other situation, students read the
material the fi rst time and then waited some days before they
reread it. This group, having done spaced readings of the text,
performed better on the test than the group who did not re-
read the material.9
Subsequent experiments at Washington University, aimed
at teasing apart some of the questions the earlier studies had
raised, assessed the benefi ts of rereading among students of
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 15
differing abilities, in a learning situation paralleling that faced
by students in classes. A total of 148 students read fi ve differ-
ent passages taken from textbooks and Scientifi c American.
The students were at two different universities; some were
high- ability readers, and others were low- ability; some stu-
dents read the material only once, and others read it twice in
succession. Then all of them responded to questions to dem-
onstrate what they had learned and remembered.
In these experiments, multiple readings in close succession
did not prove to be a potent study method for either group,
at either school, in any of the conditions tested. In fact, the
researchers found no rereading benefi t at all under these
conditions.
What’s the conclusion? It makes sense to reread a text once
if there’s been a meaningful lapse of time since the fi rst read-
ing, but doing multiple readings in close succession is a time-
consuming study strategy that yields negligible benefi ts at the
expense of much more effective strategies that take less time.
Yet surveys of college students confi rm what professors have
long known: highlighting, underlining, and sustained poring
over notes and texts are the most- used study strategies, by far.10
Illusions of Knowing
If rereading is largely in effec tive, why do students favor it?
One reason may be that they’re getting bad study advice. But
there’s another, subtler way they’re pushed toward this method
of review, the phenomenon mentioned earlier: rising familiar-
ity with a text and fl uency in reading it can create an illusion
of mastery. As any professor will attest, students work hard to
capture the precise wording of phrases they hear in class lec-
tures, laboring under the misapprehension that the essence of
the subject lies in the syntax in which it’s described. Mastering
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 16
the lecture or the text is not the same as mastering the ideas
behind them. However, repeated reading provides the illu-
sion of mastery of the underlying ideas. Don’t let yourself be
fooled. The fact that you can repeat the phrases in a text or
your lecture notes is no indication that you understand the
signifi cance of the precepts they describe, their application, or
how they relate to what you already know about the subject.
Too common is the experience of a college professor an-
swering a knock on her offi ce door only to fi nd a fi rst- year
student in distress, asking to discuss his low grade on the fi rst
test in introductory psychology. How is it possible? He at-
tended all the lectures and took diligent notes on them. He
read the text and highlighted the critical passages.
How did he study for the test? she asks.
Well, he’d gone back and highlighted his notes, and then
reviewed the highlighted notes and his highlighted text mate-
rial several times until he felt he was thoroughly familiar with
all of it. How could it be that he had pulled a D on the exam?
Had he used the set of key concepts in the back of each
chapter to test himself? Could he look at a concept like “con-
ditioned stimulus,” defi ne it, and use it in a paragraph? While
he was reading, had he thought of converting the main points
of the text into a series of questions and then later tried to
answer them while he was studying? Had he at least re-
phrased the main ideas in his own words as he read? Had he
tried to relate them to what he already knew? Had he looked
for examples outside the text? The answer was no in every
case.
He sees himself as the model student, diligent to a fault,
but the truth is he doesn’t know how to study effectively.
The illusion of mastery is an example of poor metacogni-
tion: what we know about what we know. Being accurate in
your judgment of what you know and don’t know is critical
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 17
for decision making. The problem was famously (and pro-
phetically) summed up by Secretary of State Donald Rums-
feld in a 2002 press briefi ng about US intelligence on Iraq’s
possible possession of weapons of mass destruction: “There
are known knowns; there are things we know that we know.
There are known unknowns; that is to say, there are things
that we now know we don’t know. But there are also un-
known unknowns—there are things we do not know we don’t
know.”
The emphasis here is ours. We make it to drive home the
point that students who don’t quiz themselves (and most do
not) tend to overestimate how well they have mastered class
material. Why? When they hear a lecture or read a text that is
a paragon of clarity, the ease with which they follow the argu-
ment gives them the feeling that they already know it and
don’t need to study it. In other words, they tend not to know
what they don’t know; when put to the test, they fi nd they
cannot recall the critical ideas or apply them in a new context.
Likewise, when they’ve reread their lecture notes and texts to
the point of fl uency, their fl uency gives them the false sense
that they’re in possession of the underlying content, princi-
ples, and implications that constitute real learning, confi dent
that they can recall them at a moment’s notice. The upshot is
that even the most diligent students are often hobbled by two
liabilities: a failure to know the areas where their learning is
weak— that is, where they need to do more work to bring up
their knowledge— and a preference for study methods that
create a false sense of mastery.11
Knowledge: Not Suffi cient, but Necessary
Albert Einstein declared “creativity is more important than
knowledge,” and the sentiment appears to be widely shared by
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 18
college students, if their choice in t-shirt proclamations is any
indication. And why wouldn’t they seize on the sentiment? It
embodies an obvious and profound truth, for without cre-
ativity where would our scientifi c, social, or economic break-
throughs come from? Besides which, accumulating knowledge
can feel like a grind, while creativity sounds like a lot more fun.
But of course the dichotomy is false. You wouldn’t want to see
that t-shirt on your neurosurgeon or on the captain who’s fl y-
ing your plane across the Pacifi c. But the sentiment has gained
some currency as a reaction to standardized testing, fearing
that this kind of testing leads to an emphasis on memorization
at the expense of high- level skills. Notwithstanding the pitfalls
of standardized testing, what we really ought to ask is how to
do better at building knowledge and creativity, for without
knowledge you don’t have the foundation for the higher- level
skills of analysis, synthesis, and creative problem solving. As
the psychologist Robert Sternberg and two colleagues put it,
“one cannot apply what one knows in a practical manner if
one does not know anything to apply.”12
Mastery in any fi eld, from cooking to chess to brain sur-
gery, is a gradual accretion of knowledge, conceptual under-
standing, judgment, and skill. These are the fruits of variety in
the practice of new skills, and of striving, refl ection, and men-
tal rehearsal. Memorizing facts is like stocking a construction
site with the supplies to put up a house. Building the house
requires not only knowledge of countless different fi ttings and
materials but conceptual understanding, too, of aspects like
the load- bearing properties of a header or roof truss system,
or the principles of energy transfer and conservation that will
keep the house warm but the roof deck cold so the own er
doesn’t call six months later with ice dam problems. Mastery
requires both the possession of ready knowledge and the con-
ceptual understanding of how to use it.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 19
When Matt Brown had to decide whether or not to kill his
right engine he was problem solving, and he needed to know
from memory the procedures for fl ying with a dead engine
and the tolerances of his plane in order to predict whether he
would fall out of the air or be unable to straighten up for
landing. The would- be neurosurgeon in her fi rst year of med
school has to memorize the whole ner vous system, the whole
skeletal system, the whole muscular system, the humeral sys-
tem. If she can’t, she’s not going to be a neurosurgeon. Her
success will depend on diligence, of course, but also on fi nding
study strategies that will enable her to learn the sheer volume
of material required in the limited hours available.
Testing: Dipstick versus Learning Tool
There are few surer ways to raise the hackles of many stu-
dents and educators than talking about testing. The growing
focus over recent years on standardized assessment, in par-
tic u lar, has turned testing into a lightning rod for frustration
over how to achieve the country’s education goals. Online
forums and news articles are besieged by readers who charge
that emphasis on testing favors memorization at the expense
of a larger grasp of context or creative ability; that testing cre-
ates extra stress for students and gives a false mea sure of abil-
ity; and so on. But if we stop thinking of testing as a dipstick
to mea sure learning— if we think of it as practicing retrieval
of learning from memory rather than “testing,” we open our-
selves to another possibility: the use of testing as a tool for
learning.
One of the most striking research fi ndings is the power of
active retrieval— testing—to strengthen memory, and that the
more effortful the retrieval, the stronger the benefi t. Think
fl ight simulator versus PowerPoint lecture. Think quiz versus
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 20
rereading. The act of retrieving learning from memory has
two profound benefi ts. One, it tells you what you know and
don’t know, and therefore where to focus further study to
improve the areas where you’re weak. Two, recalling what
you have learned causes your brain to reconsolidate the mem-
ory, which strengthens its connections to what you already
know and makes it easier for you to recall in the future. In
effect, retrieval— testing—interrupts forgetting. Consider an
eighth grade science class. For the class in question, at a mid-
dle school in Columbia, Illinois, researchers arranged for part
of the material covered during the course to be the subject of
low- stakes quizzing (with feedback) at three points in the se-
mester. Another part of the material was never quizzed but
was studied three times in review. In a test a month later,
which material was better recalled? The students averaged
A- on the material that was quizzed and C+ on the material
that was not quizzed but reviewed.13
In Matt Brown’s case, even after ten years pi loting the
same business jet, his employer reinforces his mastery every
six months in a battery of tests and fl ight simulations that re-
quire him to retrieve the information and maneuvers that are
essential to stay in control of his plane. As Matt points out,
you hardly ever have an emergency, so if you don’t practice
what to do, there’s no way to keep it fresh.
Both of these cases— the research in the classroom and the
experience of Matt Brown in updating his knowledge— point
to the critical role of retrieval practice in keeping our knowl-
edge accessible to us when we need it. The power of active
retrieval is the topic of Chapter 2.14
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Learning Is Misunderstood ê 21
The Takeaway
For the most part, we are going about learning in the wrong
ways, and we are giving poor advice to those who are coming
up behind us. A great deal of what we think we know about
how to learn is taken on faith and based on intuition but does
not hold up under empirical research. Per sis tent illusions of
knowing lead us to labor at unproductive strategies; as
recounted in Chapter 3, this is true even of people who have
participated in empirical studies and seen the evidence for
themselves, fi rsthand. Illusions are potent persuaders. One
of the best habits a learner can instill in herself is regular self-
quizzing to recalibrate her understanding of what she does
and does not know. Second Lieutenant Kiley Hunkler, a 2013
graduate of West Point and winner of a Rhodes Scholarship,
whom we write about in Chapter 8, uses the phrase “shooting
an azimuth” to describe how she takes practice tests to help
refocus her studying. In overland navigation, shooting an azi-
muth means climbing to a height, sighting an object on the
horizon in the direction you’re traveling, and adjusting your
compass heading to make sure you’re still gaining on your
objective as you beat through the forest below.
The good news is that we now know of simple and practical
strategies that anybody can use, at any point in life, to learn
better and remember longer: various forms of retrieval prac-
tice, such as low- stakes quizzing and self- testing, spacing out
practice, interleaving the practice of different but related top-
ics or skills, trying to solve a problem before being taught the
solution, distilling the underlying principles or rules that dif-
ferentiate types of problems, and so on. In the chapters that
follow we describe these in depth. And because learning is an
iterative pro cess that requires that you revisit what you have
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 22
learned earlier and continually update it and connect it with
new knowledge, we circle through these topics several times
along the way. At the end, in Chapter 8, we pull it all to-
gether with specifi c tips and examples for putting these tools
to work.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

23
Mike Ebersold got called into a hospi-
tal emergency room one afternoon late in 2011 to examine a
Wisconsin deer hunter who’d been found lying unconscious
in a cornfi eld. The man had blood at the back of his head, and
the men who’d found and brought him in supposed he’d
maybe stumbled and cracked his skull on something.
Ebersold is a neurosurgeon. The injury had brain protrud-
ing, and he recognized it as a gunshot wound. The hunter re-
gained consciousness in the ER, but when asked how he’d hurt
himself, he had no idea.
Recounting the incident later, Ebersold said, “Somebody
from some distance away must have fi red what appeared to
be a 12- gauge shotgun, which arced over God only knows
what distance, hit this guy in the back of his head, fractured
his skull, and lodged into the brain about an inch. It must have
been pretty much spent, or it would have gone deeper.”1
2
To Learn, Retrieve
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 24
Ebersold is tall, slender, and counts among his forebears
the Dakota chiefs named Wapasha and the French fur traders
named Rocque who populated this part of the Mississippi
River Valley where the Mayo brothers would later found
their famous clinic. Ebersold’s formal training included four
years of college, four years of medical school, and seven years
of neurosurgery training— building a foundation of knowl-
edge and skills that has been broadened and deepened through
continuing medical education classes, consultations with his
colleagues, and his practice at the Mayo Clinic and elsewhere.
He carries himself with a midwestern modesty that belies a
career that counts a long list of high- profi le patients who have
sought out his ser vices. When President Ronald Reagan needed
treatment for injuries after a fall from his horse, Ebersold par-
ticipated in the surgery and postsurgical care. When Sheikh
Zayed bin Sultan Al Nahyan, president of the United Arab
Emirates, needed delicate spinal repair, he and what seemed
like half the nation’s ministry and security forces settled in
Rochester while Mike Ebersold made the repair and oversaw
Zayed’s recovery. Following a long career at Mayo, Mike had
returned to help out at the clinic in Wisconsin, feeling indebted
to it for his early medical training. The hunter whose bad luck
put him in the way of an errant 12- gauge slug was luckier
than he likely knows that Mike was on the job that day.
The bullet had entered an area of the skull beneath which
there is a large venous sinus, a soft- tissue channel that drains
the brain cavity. As he examined the hunter, Ebersold knew
from experience that when he opened up the wound, there
was a high probability he would fi nd this vein was torn. As he
described it,
You say to yourself, “This patient is going to need surgery.
There’s brain coming out of the wound. We have to clean this
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 25
up and repair this as best we can, but in so doing we may get
into this big vein and that could be very, very serious.” So you
go through the checklist. You say, “I might need a blood trans-
fusion for this patient,” so you set up some blood. You review
the steps, A, B, C, and D. You set up the operating room, tell-
ing them ahead of time what you might be encountering. All
of this is sort of protocol, pretty much like a cop getting ready
to pull over a car, you know what the book says, you’ve gone
through all these steps.
Then you get to the operating room, and now you’re still in
this mode where you have time to think through it. You say,
“Gee, I don’t want to just go and pull that bullet out if there
might be major bleeding. What I’ll try to do is I’ll work around
the edges and get things freed up so I’m ready for what could
go wrong, and then I’ll pull it out.”
It turned out that the bullet and bone were lodged in the vein,
serving as plugs, another lucky turn for the hunter. If the
wound hadn’t corked itself in the fi eld, he would not have
lived for more than two or three minutes. When Ebersold re-
moved the bullet, the fractured bone chips fell away, and the
vein let loose in a torrent. “Within fi ve minutes, you’ve lost
two or so units of blood and now you sort of transfer out of
the mode where you’re thinking through this, going through
the options. Now it becomes refl ex, mechanical. You know it’s
going to bleed very, very much, so you have a very short time.
You’re just thinking, ‘I have to get a suture around this struc-
ture, and I know from previous experience I have to do it in
this par tic u lar way.’ ”
The vein in question, which is about the size of an adult’s
small fi nger, was torn in several places over a distance of about
an inch and a half. It needed to be tied off above and below
the rupture, but it’s a fl at structure that he knows well: you
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 26
can’t just put a stitch around it, because when you tighten it,
the tissue tears, and the ligature leaks. Working urgently and
mechanically, he fell back on a technique he’d developed out
of necessity in past surgeries involving this vein. He cut two
little pieces of muscle, from where the patient’s skin had been
opened up in surgery, and imported them to the site and
stitched the ends of the torn vein to them. These plugs of
muscle served to close the vein without defl ecting its natural
shape or tearing its tissue. It’s a solution Mike has taught
himself— one he says you won’t fi nd written anywhere, but
handy in the moment, to say the least. In the sixty or so sec-
onds it took to do, the patient lost another two hundred cubic
centimeters of blood, but once the plugs were in place, the
bleeding stopped. “Some people can’t tolerate this sinus vein
being closed off. They get increased brain pressure because
the blood doesn’t drain properly. But this patient was one of
the fortunate who can.” The hunter left the hospital a week
later. He was minus some peripheral vision but otherwise re-
markably unscathed from a very close brush with mortality.
Refl ection Is a Form of Practice
What inferences can we draw from this story about how we
learn and remember? In neurosurgery (and, arguably, in all
aspects of life from the moment you leave the womb), there’s
an essential kind of learning that comes from refl ection on
personal experience. Ebersold described it this way:
A lot of times something would come up in surgery that I had
diffi culty with, and then I’d go home that night thinking about
what happened and what could I do, for example, to improve
the way a suturing went. How can I take a bigger bite with my
needle, or a smaller bite, or should the stitches be closer to-
gether? What if I modifi ed it this way or that way? Then the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 27
next day back, I’d try that and see if it worked better. Or even
if it wasn’t the next day, at least I’ve thought through this, and
in so doing I’ve not only revisited things that I learned from
lectures or from watching others performing surgery but also
I’ve complemented that by adding something of my own to it
that I missed during the teaching pro cess.
Refl ection can involve several cognitive activities that lead
to stronger learning: retrieving knowledge and earlier training
from memory, connecting these to new experiences, and visu-
alizing and mentally rehearsing what you might do differently
next time.
It was this kind of refl ection that originally had led Eber-
sold to try a new technique for repairing the sinus vein at the
back of the head, a technique he practiced in his mind and in
the operating room until it became the kind of refl exive maneu-
ver you can depend on when your patient is spouting blood at
two hundred cubic centimeters a minute.
To make sure the new learning is available when it’s needed,
Ebersold points out, “you memorize the list of things that you
need to worry about in a given situation: steps A, B, C, and D,”
and you drill on them. Then there comes a time when you get
into a tight situation and it’s no longer a matter of thinking
through the steps, it’s a matter of refl exively taking the cor-
rect action. “Unless you keep recalling this maneuver, it will
not become a refl ex. Like a race car driver in a tight situation
or a quarterback dodging a tackle, you’ve got to act out of re-
fl ex before you’ve even had time to think. Recalling it over and
over, practicing it over and over. That’s just so important.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 28
The Testing Effect
A child stringing cranberries on a thread goes to hang them
on the tree, only to fi nd they’ve slipped off the other end. With-
out the knot, there’s no making a string. Without the knot there’s
no necklace, there’s no beaded purse, no magnifi cent tapestry.
Retrieval ties the knot for memory. Repeated retrieval snugs it
up and adds a loop to make it fast.
Since as far back as 1885, psychologists have been plotting
“forgetting curves” that illustrate just how fast our cranberries
slip off the string. In very short order we lose something like
70 percent of what we’ve just heard or read. After that, forget-
ting begins to slow, and the last 30 percent or so falls away
more slowly, but the lesson is clear: a central challenge to im-
proving the way we learn is fi nding a way to interrupt the pro-
cess of forgetting.2
The power of retrieval as a learning tool is known among
psychologists as the testing effect. In its most common form,
testing is used to mea sure learning and assign grades in school,
but we’ve long known that the act of retrieving knowledge
from memory has the effect of making that knowledge easier
to call up again in the future. In his essay on memory, Aristotle
wrote: “exercise in repeatedly recalling a thing strengthens the
memory.” Francis Bacon wrote about this phenomenon, as did
the psychologist William James. Today, we know from empiri-
cal research that practicing retrieval makes learning stick far
better than reexposure to the original material does. This is the
testing effect, also known as the retrieval- practice effect.3
To be most effective, retrieval must be repeated again and
again, in spaced out sessions so that the recall, rather than
becoming a mindless recitation, requires some cognitive ef-
fort. Repeated recall appears to help memory consolidate into
a cohesive repre sen ta tion in the brain and to strengthen and
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 29
multiply the neural routes by which the knowledge can later
be retrieved. In recent de cades, studies have confi rmed what
Mike Ebersold and every seasoned quarterback, jet pi lot, and
teenaged texter knows from experience— that repeated re-
trieval can so embed knowledge and skills that they become
refl exive: the brain acts before the mind has time to think.
Yet despite what research and personal experience tell us
about the power of testing as a learning tool, teachers and stu-
dents in traditional educational settings rarely use it as such,
and the technique remains little understood or utilized by teach-
ers or students as a learning tool in traditional educational
settings. Far from it.
In 2010 the New York Times reported on a scientifi c study
that showed that students who read a passage of text and then
took a test asking them to recall what they had read retained
an astonishing 50 percent more of the information a week
later than students who had not been tested. This would seem
like good news, but here’s how it was greeted in many online
comments:
“Once again, another author confuses learning with recalling
information.”
“I personally would like to avoid as many tests as possible,
especially with my grade on the line. Trying to learn in a stress-
ful environment is no way to help retain information.”
“Nobody should care whether memorization is enhanced by
practice testing or not. Our children cannot do much of any-
thing anymore.”4
Forget memorization, many commenters argued; education
should be about high- order skills. Hmmm. If memorization
is irrelevant to complex problem solving, don’t tell your
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 30
neurosurgeon. The frustration many people feel toward stan-
dardized, “dipstick” tests given for the sole purpose of mea-
sur ing learning is understandable, but it steers us away from
appreciating one of the most potent learning tools available
to us. Pitting the learning of basic knowledge against the de-
velopment of creative thinking is a false choice. Both need to
be cultivated. The stronger one’s knowledge about the subject
at hand, the more nuanced one’s creativity can be in address-
ing a new problem. Just as knowledge amounts to little with-
out the exercise of ingenuity and imagination, creativity ab-
sent a sturdy foundation of knowledge builds a shaky house.
Studying the Testing Effect in the Lab
The testing effect has a solid pedigree in empirical research.
The fi rst large- scale investigation was published in 1917.
Children in grades 3, 5, 6, and 8 studied brief biographies
from Who’s Who in America. Some of them were directed to
spend varying lengths of the study time looking up from the
material and silently reciting to themselves what it contained.
Those who did not do so simply continued to reread the ma-
terial. At the end of the period, all the children were asked to
write down what they could remember. The recall test was
repeated three to four hours later. All the groups who had
engaged in the recitation showed better retention than those
who had not done so but had merely continued to review the
material. The best results were from those spending about 60
percent of the study time in recitation.
A second landmark study, published in 1939, tested over
three thousand sixth graders across Iowa. The kids studied
six- hundred- word articles and then took tests at various times
before a fi nal test two months later. The experiment showed a
couple of interesting results: the longer the fi rst test was de-
layed, the greater the forgetting, and second, once a student
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 31
had taken a test, the forgetting nearly stopped, and the stu-
dent’s score on subsequent tests dropped very little.5
Around 1940, interest turned to the study of forgetting,
and investigating the potential of testing as a form of retrieval
practice and as a learning tool fell out of favor. So did the use
of testing as a research tool: since testing interrupts forgetting,
you can’t use it to mea sure forgetting because that “contami-
nates” the subject.
Interest in the testing effect resurfaced in 1967 with the
publication of a study showing that research subjects who
were presented with lists of thirty- six words learned as much
from repeated testing after initial exposure to the words as
they did from repeated studying. These results— that testing
led to as much learning as studying did— challenged the re-
ceived wisdom, turned researchers’ attention back to the po-
tential of testing as a learning tool, and stimulated a boomlet
in testing research.
In 1978, researchers found that massed studying (cram-
ming) leads to higher scores on an immediate test but results
in faster forgetting compared to practicing retrieval. In a sec-
ond test two days after an initial test, the crammers had for-
gotten 50 percent of what they had been able to recall on the
initial test, while those who had spent the same period prac-
ticing retrieval instead of studying had forgotten only 13 per-
cent of the information recalled initially.
A subsequent study was aimed at understanding what ef-
fect taking multiple tests would have on subjects’ long- term
retention. Students heard a story that named sixty concrete
objects. Those students who were tested immediately after
exposure recalled 53 percent of the objects on this initial test
but only 39 percent a week later. On the other hand, a group
of students who learned the same material but were not tested
at all until a week later recalled 28 percent. Thus, taking a
single test boosted per for mance by 11 percent after a week.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 32
But what effect would three immediate tests have relative to
one? Another group of students were tested three times after
initial exposure and a week later they were able to recall 53
percent of the objects— the same as on the initial test for the
group receiving one test. In effect, the group that received
three tests had been “immunized” against forgetting, com-
pared to the one- test group, and the one- test group remem-
bered more than those who had received no test immediately
following exposure. Thus, and in agreement with later research,
multiple sessions of retrieval practice are generally better than
one, especially if the test sessions are spaced out.6
In another study, researchers showed that simply asking a
subject to fi ll in a word’s missing letters resulted in better
memory of the word. Consider a list of word pairs. For a pair
like foot-shoe, those who studied the pair intact had lower sub-
sequent recall than those who studied the pair from a clue as
obvious as foot-s_ _e. This experiment was a demonstration of
what researchers call the “generation effect.” The modest effort
required to generate the cued answer while studying the pairs
strengthened memory of the target word tested later (shoe).
Interestingly, this study found that the ability to recall the word
pair on later tests was greater if the practice retrieval was de-
layed by twenty intervening word pairs than when it came im-
mediately after fi rst studying the pair.7 Why would that be?
One argument suggested that the greater effort required by the
delayed recall solidifi ed the memory better. Researchers began
to ask whether the schedule of testing mattered.
The answer is yes. When retrieval practice is spaced, allow-
ing some forgetting to occur between tests, it leads to stronger
long- term retention than when it is massed.
Researchers began looking for opportunities to take their
inquiries out of the lab and into the classroom, using the kinds
of materials students are required to learn in school.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 33
Studying the Testing Effect “In the Wild”
In 2005, we and our colleagues approached Roger Cham-
berlain, the principal of a middle school in nearby Columbia,
Illinois, with a proposition. The positive effects of retrieval
practice had been demonstrated many times in controlled lab-
oratory settings but rarely in a regular classroom setting.
Would the principal, teachers, kids, and parents of Colum-
bia Middle School be willing subjects in a study to see how
the testing effect would work “in the wild”?
Chamberlain had concerns. If this was just about memori-
zation, he wasn’t especially interested. His aim is to raise the
school’s students to higher forms of learning— analysis, synthe-
sis, and application, as he put it. And he was concerned about
his teachers, an energetic faculty with curricula and varied
instructional methods he was loath to disrupt. On the other
hand, the study’s results could be instructive, and participa-
tion would bring enticements in the form of smart boards and
“clickers”— automated response systems—for the classrooms
of participating teachers. Money for new technology is fa-
mously tight.
A sixth grade social studies teacher, Patrice Bain, was eager
to give it a try. For the researchers, a chance to work in the
classroom was compelling, and the school’s terms were ac-
cepted: the study would be minimally intrusive by fi tting within
existing curricula, lesson plans, test formats, and teaching
methods. The same textbooks would be used. The only differ-
ence in the class would be the introduction of occasional short
quizzes. The study would run for three semesters (a year and
a half), through several chapters of the social studies textbook,
covering topics such as ancient Egypt, Mesopotamia, India,
and China. The project was launched in 2006. It would prove
to be a good decision.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 34
For the six social studies classes a research assistant, Pooja
Agarwal, designed a series of quizzes that would test students
on roughly one- third of the material covered by the teacher.
These quizzes were for “no stakes,” meaning that scores were
not counted toward a grade. The teacher excused herself from
the classroom for each quiz so as to remain unaware of which
material was being tested. One quiz was given at the start of
class, on material from assigned reading that hadn’t yet been
discussed. A second was given at the end of class after the
teacher had covered the material for the day’s lesson. And a
review quiz was given twenty- four hours before each unit
exam.
There was concern that if students tested better in the fi nal
exam on material that had been quizzed than on material not
quizzed, it could be argued that the simple act of reexposing
them to the material in the quizzes was responsible for the
superior learning, not the retrieval practice. To counter this
possibility, some of the nonquizzed material was interspersed
with the quiz material, provided as simple review statements,
like “The Nile River has two major tributaries: the White Nile
and the Blue Nile,” with no retrieval required. The facts were
quizzed for some classes but just restudied for others.
The quizzes took only a few minutes of classroom time.
After the teacher stepped out of the room, Agarwal projected
a series of slides onto the board at the front of the room and
read them to the students. Each slide presented either a mul-
tiple choice question or a statement of fact. When the slide
contained a question, students used clickers (handheld, cell-
phone- like remotes) to indicate their answer choice: A, B, C,
or D. When all had responded, the correct answer was revealed,
so as to provide feedback and correct errors. (Although teachers
were not present for these quizzes, under normal circumstances,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 35
with teachers administering quizzes, they would see immedi-
ately how well students are tracking the study material and
use the results to guide further discussion or study.)
Unit exams were the normal pencil- and- paper tests given
by the teacher. Exams were also given at the end of the se-
mester and at the end of the year. Students had been exposed
to all of the material tested in these exams through the teacher’s
normal classroom lessons, homework, worksheets, and so
on, but they had also been quizzed three times on one- third
of the material, and they had seen another third presented
for additional study three times. The balance of the material
was neither quizzed nor additionally reviewed in class beyond
the initial lesson and what ever reading a student may have
done.
The results were compelling: The kids scored a full grade
level higher on the material that had been quizzed than on the
material that had not been quizzed. Moreover, test results for
the material that had been reviewed as statements of fact but
not quizzed were no better than those for the nonreviewed
material. Again, mere rereading does not much help.
In 2007, the research was extended to eighth grade science
classes, covering ge ne tics, evolution, and anatomy. The regi-
men was the same, and the results equally impressive. At the
end of three semesters, the eighth graders averaged 79 percent
(C+) on the science material that had not been quizzed, com-
pared to 92 percent (A−) on the material that had been quizzed.
The testing effect persisted eight months later at the end-
of- year exams, confi rming what many laboratory studies have
shown about the long- term benefi ts of retrieval practice. The
effect doubtless would have been greater if the retrieval prac-
tice had continued and occurred once a month, say, in the in-
tervening months.8
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 36
The lesson from these studies has been taken to heart by
many of the teachers at Columbia Middle School. Long after
concluding their participation in the research studies, Patrice
Bain’s sixth grade social studies classes continue today to fol-
low a schedule of quizzes before lessons, quizzes after lessons,
and then a review quiz prior to the chapter test. Jon Wehren-
berg, an eighth grade history teacher who was not part of the
research, has knitted retrieval practice into his classroom in
many different forms, including quizzing, and he provides ad-
ditional online tools at his website, like fl ashcards and games.
After reading passages on the history of slavery, for example,
his students are asked to write down ten facts about slavery
they hadn’t known before reading the passages. You don’t
need electronic gadgetry to practice retrieval.
Seven sixth and seventh graders needing to improve their
reading and comprehension skills sat in Michelle Spivey’s En-
glish classroom one period recently with their reading books
open to an amusing story. Each student was invited to read a
paragraph aloud. Where a student stumbled, Miss Spivey had
him try again. When he’d gotten it right, she probed the class
to explain the meaning of the passage and what might have
been going on in the characters’ minds. Retrieval and elabora-
tion; again, no technology required.
Quizzes at Columbia Middle School are not onerous events.
Following completion of the research studies, students’ views
were surveyed on this question. Sixty- four percent said the
quizzing reduced their anxiety over unit exams, and 89 percent
felt it increased learning. The kids expressed disappointment
on days when clickers were not used, because the activity broke
up the teacher’s lecture and proved enjoyable.
Principal Chamberlain, when asked what he thought the
study results indicated, replied simply: “Retrieval practice has
a signifi cant impact on kids’ learning. This is telling us that
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 37
it’s valuable, and that teachers are well advised to incorporate
it into their instructional technique.”9
Are similar effects found at a later age?
Andrew Sobel teaches a class in international po liti cal eco-
nomics at Washington University in St. Louis, a lecture course
populated by 160– 170 students, mostly freshmen and sopho-
mores. Over a period of several years he noticed a growing
problem with attendance. On any given day by midsemester,
25– 35 percent of the class would be absent, compared to ear-
lier in the semester when maybe 10 percent would be absent.
The problem wasn’t unique to his class, he says. A lot of pro-
fessors give students their PowerPoint slides, so the students
just stop coming to class. Sobel fought back by withholding
his slides, but by the end of the semester, many students
stopped showing up anyway. The class syllabus included two
big tests, a midterm and a fi nal. Looking for some way to
leverage attendance, Sobel replaced the big tests with nine
pop quizzes. Because the quizzes would determine the course
grade and would be unannounced, students would be well
advised to show up for class.
The results were distressing. Over the semester, a third or
more of the students bailed out. “I really got hammered in the
teaching reviews,” Sobel told us. “The kids hated it. If they
didn’t do well on a quiz they dropped the course rather than
get a bad grade in it. Of those who stayed, I got this bifurcation
between those who actually showed up and did the work, and
those who didn’t. I found myself handing out A-plusses, which
I’d never given before, and more Cs than I’d ever given.”10
With so much pushback, he had little choice but to drop the
experiment and reinstate the old format, lectures with a mid-
term and fi nal. A couple of years later, however, after hearing a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 38
pre sen ta tion about the learning benefi ts of testing, he added a
third major test during the semester to see what effect it
might have on his students’ learning. They did better, but
not by as much as he’d hoped, and the attendance problems
persisted.
He scratched his head and changed the syllabus once again.
This time he announced that there would be nine quizzes dur-
ing the semester, and he was explicit about when they would
be. No surprises, and no midterm or fi nal exams, because he
didn’t want to give up that much of his lecture time.
Despite fears that enrollments would plummet again, they
actually increased by a handful. “Unlike the pop quizzes, which
kids hate, these were all on the syllabus. If they missed one it
was their own fault. It wasn’t because I surprised them or was
being pernicious. They were comfortable with that.” Sobel took
satisfaction in seeing attendance improve as well. “They would
skip some classes on the days they didn’t have a quiz, particu-
larly the spring semester, but they showed up for the quizzes.”
Like the course, the quizzes were cumulative, and the ques-
tions were similar to those on the exams he used to give, but
the quality of the answers he was getting by midsemester was
much better than he was accustomed to seeing on the mid-
terms. Five years into this new format, he’s sold on it. “The
quality of discussions in class has gone way up. I see that big
a difference in their written work, just by going from three
exams to nine quizzes.” By the end of the semester he has them
writing paragraphs on the concepts covered in class, some-
times a full- page essay, and the quality is comparable to what
he’s seeing in his upper division classes.
“Anybody can design this structure. But I also realize that,
Oh, god, if I’d done this years ago I would have taught them
that much more stuff. The interesting thing about adopting
this strategy is I now recognize that as good a teacher as I
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 39
might think I am, my teaching is only a component of their
learning, and how I structure it has a lot to do with it, maybe
even more.” Meanwhile, the course enrollment has grown to
185 and counting.
Exploring Nuances
Andy Sobel’s example is anecdotal and likely refl ects a variety
of benefi cial infl uences, not least being the cumulative learn-
ing effects that accrue like compounded interest when course
material is carried forward in a regime of quizzes across an
entire semester. Nonetheless, his experience squares with em-
pirical research designed to tease apart the effects and nu-
ances of testing.
For example, in one experiment college students studied
prose passages on various scientifi c topics like those taught in
college and then either took an immediate recall test after the
initial exposure or restudied the material. After a delay of two
days, the students who took the initial test recalled more of
the material than those who simply restudied it (68 v. 54 per-
cent), and this advantage was sustained a week later (56 v. 42
percent). Another experiment found that after one week a
study- only group showed the most forgetting of what they ini-
tially had been able to recall, forgetting 52 percent, compared
to a repeated- testing group, who forgot only 10 percent.11
How does giving feedback on wrong answers to test questions
affect learning? Studies show that giving feedback strengthens
retention more than testing alone does, and, interestingly,
some evidence shows that delaying the feedback briefl y pro-
duces better long- term learning than immediate feedback. This
fi nding is counterintuitive but is consistent with researchers’
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 40
discoveries about how we learn motor tasks, like making lay-
ups or driving a golf ball toward a distant green. In motor
learning, trial and error with delayed feedback is a more awk-
ward but effective way of acquiring a skill than trial and cor-
rection through immediate feedback; immediate feedback is
like the training wheels on a bicycle: the learner quickly comes
to depend on the continued presence of the correction.
In the case of learning motor skills, one theory holds that
when there’s immediate feedback it comes to be part of the
task, so that later, in a real- world setting, its absence becomes
a gap in the established pattern that disrupts per for mance.
Another idea holds that frequent interruptions for feedback
make the learning sessions too variable, preventing establish-
ment of a stabilized pattern of per for mance.12
In the classroom, delayed feedback also yields better long-
term learning than immediate feedback does. In the case of
the students studying prose passages on science topics, some
were shown the passage again even while they were asked to
answer questions about it, in effect providing them with con-
tinuous feedback during the test, analogous to an open- book
exam. The other group took the test without the study mate-
rial at hand and only afterward were given the passage and
instructed to look over their responses. Of course, the open-
book group performed best on the immediate test, but those
who got corrective feedback after completing the test retained
the learning better on a later test. Delayed feedback on writ-
ten tests may help because it gives the student practice that’s
spaced out in time; as discussed in the next chapter, spacing
practice improves retention.13
Are some kinds of retrieval practice more effective for long-
term learning than others? Tests that require the learner to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 41
supply the answer, like an essay or short- answer test, or sim-
ply practice with fl ashcards, appear to be more effective than
simple recognition tests like multiple choice or true/false tests.
However, even multiple choice tests like those used at Colum-
bia Middle School can yield strong benefi ts. While any kind
of retrieval practice generally benefi ts learning, the implication
seems to be that where more cognitive effort is required for
retrieval, greater retention results. Retrieval practice has been
studied extensively in recent years, and an analysis of these
studies shows that even a single test in a class can produce a
large improvement in fi nal exam scores, and gains in learning
continue to increase as the number of tests increases.14
Whichever theories science eventually tells us are correct
about how repeated retrieval strengthens memory, empirical
research shows us that the testing effect is real— that the act
of retrieving a memory changes the memory, making it easier
to retrieve again later.
How widely is retrieval practice used as a study technique? In
one survey, college students were largely unaware of its effec-
tiveness. In another survey, only 11 percent of college students
said they use this study strategy. Even when they did report
testing themselves, they mostly said they did it to discover what
they didn’t know, so they could study that material more.
That’s a perfectly valid use of testing, but few students realize
that retrieval itself creates greater retention.15
Is repeated testing simply a way to expedite rote learning? In
fact, research indicates that testing, compared to rereading,
can facilitate better transfer of knowledge to new contexts
and problems, and that it improves one’s ability to retain and
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 42
retrieve material that is related but not tested. Further re-
search is needed on this point, but it seems that retrieval prac-
tice can make information more accessible when it is needed
in various contexts.
Do students resist testing as a tool for learning? Students do
generally dislike the idea of tests, and it’s not hard to see why,
in par tic u lar in the case of high- stakes tests like midterms and
fi nals, where the score comes with signifi cant consequences.
Yet in all studies of testing that reported students’ attitudes,
the students who were tested frequently rated their classes
more favorably at the end of the semester than those tested
less frequently. Those who were frequently tested reached the
end of the semester on top of the material and did not need to
cram for exams.
How does taking a test affect subsequent studying? After a test,
students spend more time restudying the material they missed,
and they learn more from it than do their peers who restudy the
material without having been tested. Students whose study
strategies emphasize rereading but not self- testing show over-
confi dence in their mastery. Students who have been quizzed
have a double advantage over those who have not: a more
accurate sense of what they know and don’t know, and the
strengthening of learning that accrues from retrieval practice.16
Are there any further, indirect benefi ts of regular, low- stakes
classroom testing? Besides strengthening learning and reten-
tion, a regime of this kind of testing improves student atten-
dance. It increases studying before class (because students
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 43
know they’ll be quizzed), increases attentiveness during class
if students are tested at the end of class, and enables students
to better calibrate what they know and where they need to
bone up. It’s an antidote to mistaking fl uency with the text,
resulting from repeated readings, for mastery of the subject.
Frequent low- stakes testing helps dial down test anxiety
among students by diversifying the consequences over a much
larger sample: no single test is a make- or- break event. And
this kind of testing enables instructors to identify gaps in stu-
dents’ understanding and adapt their instruction to fi ll them.
These benefi ts of low- stakes testing accrue whether instruc-
tion is delivered online or in the classroom.17
The Takeaway
Practice at retrieving new knowledge or skill from memory is
a potent tool for learning and durable retention. This is true
for anything the brain is asked to remember and call up again
in the future— facts, complex concepts, problem- solving tech-
niques, motor skills.
Effortful retrieval makes for stronger learning and reten-
tion. We’re easily seduced into believing that learning is better
when it’s easier, but the research shows the opposite: when
the mind has to work, learning sticks better. The greater the
effort to retrieve learning, provided that you succeed, the more
that learning is strengthened by retrieval. After an initial test,
delaying subsequent retrieval practice is more potent for rein-
forcing retention than immediate practice, because delayed
retrieval requires more effort.
Repeated retrieval not only makes memories more durable
but produces knowledge that can be retrieved more readily,
in more varied settings, and applied to a wider variety of
problems.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 44
While cramming can produce better scores on an immedi-
ate exam, the advantage quickly fades because there is much
greater forgetting after rereading than after retrieval practice.
The benefi ts of retrieval practice are long- term.
Simply including one test (retrieval practice) in a class
yields a large improvement in fi nal exam scores, and gains
continue to increase as the frequency of classroom testing
increases.
Testing doesn’t need to be initiated by the instructor. Stu-
dents can practice retrieval anywhere; no quizzes in the class-
room are necessary. Think fl ashcards— the way second grad-
ers learn the multiplication tables can work just as well for
learners at any age to quiz themselves on anatomy, mathemat-
ics, or law. Self- testing may be unappealing because it takes
more effort than rereading, but as noted already, the greater
the effort at retrieval, the more will be retained.
Students who take practice tests have a better grasp of their
progress than those who simply reread the material. Similarly,
such testing enables an instructor to spot gaps and miscon-
ceptions and adapt instruction to correct them.
Giving students corrective feedback after tests keeps them
from incorrectly retaining material they have misunderstood
and produces better learning of the correct answers.
Students in classes that incorporate low- stakes quizzing
come to embrace the practice. Students who are tested fre-
quently rate their classes more favorably.
What about Principal Roger Chamberlain’s initial concerns
about practice quizzing at Columbia Middle School— that it
might be nothing more than a glorifi ed path to rote learning?
When we asked him this question after the study was com-
pleted, he paused for a moment to gather his thoughts. “What
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

To Learn, Retrieve ê 45
I’ve really gained a comfort level with is this: for kids to be
able to evaluate, synthesize, and apply a concept in different
settings, they’re going to be much more effi cient at getting
there when they have the base of knowledge and the reten-
tion, so they’re not wasting time trying to go back and fi gure
out what that word might mean or what that concept was
about. It allows them to go to a higher level.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

46
It may not be intuitive that retrieval
practice is a more powerful learning strategy than repeated
review and rereading, yet most of us take for granted the
importance of testing in sports. It’s what we call “practice-
practice- practice.” Well, here’s a study that may surprise you.
A group of eight- year- olds practiced tossing beanbags into
buckets in gym class. Half of the kids tossed into a bucket three
feet away. The other half mixed it up by tossing into buckets
two feet and four feet away. After twelve weeks of this they
were all tested on tossing into a three- foot bucket. The kids
who did the best by far were those who’d practiced on two-
and four- foot buckets but never on three- foot buckets.1
Why is this? We will come back to the beanbags, but fi rst a
little insight into a widely held myth about how we learn.
3
Mix Up Your Practice
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 47
The Myth of Massed Practice
Most of us believe that learning is better when you go at
something with single- minded purpose: the practice- practice-
practice that’s supposed to burn a skill into memory. Faith in
focused, repetitive practice of one thing at a time until we’ve
got it nailed is pervasive among classroom teachers, athletes,
corporate trainers, and students. Researchers call this kind
of practice “massed,” and our faith rests in large part on the
simple fact that when we do it, we can see it making a differ-
ence. Nevertheless, despite what our eyes tell us, this faith is
misplaced.
If learning can be defi ned as picking up new knowledge or
skills and being able to apply them later, then how quickly
you pick something up is only part of the story. Is it still there
when you need to use it out in the everyday world? While
practicing is vital to learning and memory, studies have shown
that practice is far more effective when it’s broken into sepa-
rate periods of training that are spaced out. The rapid gains
produced by massed practice are often evident, but the rapid
forgetting that follows is not. Practice that’s spaced out, inter-
leaved with other learning, and varied produces better mas-
tery, longer retention, and more versatility. But these benefi ts
come at a price: when practice is spaced, interleaved, and
varied, it requires more effort. You feel the increased effort,
but not the benefi ts the effort produces. Learning feels slower
from this kind of practice, and you don’t get the rapid im-
provements and affi rmations you’re accustomed to seeing
from massed practice. Even in studies where the participants
have shown superior results from spaced learning, they don’t
perceive the improvement; they believe they learned better on
the material where practice was massed.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 48
Almost everywhere you look, you fi nd examples of massed
practice: summer language boot camps, colleges that offer con-
centration in a single subject with the promise of fast learning,
continuing education seminars for professionals where train-
ing is condensed into a single weekend. Cramming for exams
is a form of massed practice. It feels like a productive strategy,
and it may get you through the next day’s midterm, but most
of the material will be long forgotten by the time you sit down
for the fi nal. Spacing out your practice feels less productive
for the very reason that some forgetting has set in and you’ve
got to work harder to recall the concepts. It doesn’t feel like
you’re on top of it. What you don’t sense in the moment is that
this added effort is making the learning stronger.2
Spaced Practice
The benefi ts of spacing out practice sessions are long estab-
lished, but for a vivid example consider this study of thirty-
eight surgical residents. They took a series of four short
lessons in microsurgery: how to reattach tiny vessels. Each
lesson included some instruction followed by some prac-
tice. Half the docs completed all four lessons in a single day,
which is the normal in- service schedule. The others completed
the same four lessons but with a week’s interval between
them.3
In a test given a month after their last session, those whose
lessons had been spaced a week apart outperformed their col-
leagues in all areas— elapsed time to complete a surgery, num-
ber of hand movements, and success at reattaching the sev-
ered, pulsating aortas of live rats. The difference in per for mance
between the two groups was impressive. The residents who
had taken all four sessions in a single day not only scored
lower on all mea sures, but 16 percent of them damaged the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 49
rats’ vessels beyond repair and were unable to complete their
surgeries.
Why is spaced practice more effective than massed practice?
It appears that embedding new learning in long- term memory
requires a pro cess of consolidation, in which memory traces
(the brain’s repre sen ta tions of the new learning) are strength-
ened, given meaning, and connected to prior knowledge— a
pro cess that unfolds over hours and may take several days.
Rapid- fi re practice leans on short- term memory. Durable
learning, however, requires time for mental rehearsal and the
other pro cesses of consolidation. Hence, spaced practice works
better. The increased effort required to retrieve the learning
after a little forgetting has the effect of retriggering consoli-
dation, further strengthening memory. We explore some of the
theories about this pro cess in the next chapter.
Interleaved Practice
Interleaving the practice of two or more subjects or skills is
also a more potent alternative to massed practice, and here’s a
quick example of that. Two groups of college students were
taught how to fi nd the volumes of four obscure geometric
solids (wedge, spheroid, spherical cone, and half cone). One
group then worked a set of practice problems that were clus-
tered by problem type (practice four problems for computing
the volume of a wedge, then four problems for a spheroid,
etc.). The other group worked the same practice problems,
but the sequence was mixed (interleaved) rather than clustered
by type of problem. Given what we’ve already presented, the
results may not surprise you. During practice, the students
who worked the problems in clusters (that is, massed) averaged
89 percent correct, compared to only 60 percent for those
who worked the problems in a mixed sequence. But in the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 50
fi nal test a week later, the students who had practiced solving
problems clustered by type averaged only 20 percent correct,
while the students whose practice was interleaved averaged
63 percent. The mixing of problem types, which boosted fi nal
test per for mance by a remarkable 215 percent, actually im-
peded per for mance during initial learning.4
Now, suppose you’re a trainer in a company trying to teach
employees a complicated new pro cess that involves ten proce-
dures. The typical way of doing this is to train up in proce-
dure 1, repeating it many times until the trainees really seem to
have it down cold. Then you go to procedure 2, you do many
repetitions of 2, you get that down, and so on. That appears
to produce fast learning. What would interleaved practice look
like? You practice procedure 1 just a few times, then switch to
procedure 4, then switch to 3, then to 7, and so on. (Chapter
8 tells how Farmers Insurance trains new agents in a spiraling
series of exercises that cycle back to key skillsets in a seem-
ingly random sequence that adds layers of context and mean-
ing at each turn.)
The learning from interleaved practice feels slower than
learning from massed practice. Teachers and students sense
the difference. They can see that their grasp of each element is
coming more slowly, and the compensating long- term advan-
tage is not apparent to them. As a result, interleaving is unpop-
u lar and seldom used. Teachers dislike it because it feels slug-
gish. Students fi nd it confusing: they’re just starting to get a
handle on new material and don’t feel on top of it yet when
they are forced to switch. But the research shows unequivo-
cally that mastery and long- term retention are much better if
you interleave practice than if you mass it.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 51
Varied Practice
Okay, what about the beanbag study where the kids who did
best had never practiced the three- foot toss that the other kids
had only practiced?
The beanbag study focused on mastery of motor skills, but
much evidence has shown that the underlying principle ap-
plies to cognitive learning as well. The basic idea is that varied
practice— like tossing your beanbags into baskets at mixed
distances— improves your ability to transfer learning from
one situation and apply it successfully to another. You develop
a broader understanding of the relationships between different
conditions and the movements required to succeed in them;
you discern context better and develop a more fl exible “move-
ment vocabulary”— different movements for different situa-
tions. Whether the scope of variable training (e.g., the two-
and four- foot tosses) must encompass the par tic u lar task (the
three- foot toss) is subject for further study.
The evidence favoring variable training has been supported
by recent neuroimaging studies that suggest that different kinds
of practice engage different parts of the brain. The learning of
motor skills from varied practice, which is more cognitively
challenging than massed practice, appears to be consolidated
in an area of the brain associated with the more diffi cult pro-
cess of learning higher- order motor skills. The learning of mo-
tor skills from massed practice, on the other hand, appears to
be consolidated in a different area of the brain that is used for
learning more cognitively simple and less challenging motor
skills. The inference is that learning gained through the less
challenging, massed form of practice is encoded in a simpler
or comparatively impoverished repre sen ta tion than the learn-
ing gained from the varied and more challenging practice
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 52
which demands more brain power and encodes the learning
in a more fl exible repre sen ta tion that can be applied more
broadly.5
Among athletes, massed practice has long been the rule:
take your hook shot, knock the twenty- foot putt, work your
backhand return, throw the pass while rolling out: again and
again and again— to get it right and train your “muscle mem-
ory.” Or so the notion holds. The benefi ts of variable training
for motor learning have been gaining broader ac cep tance,
albeit slowly. Consider the one- touch pass in hockey. That’s
where you receive the puck and immediately pass it to a team-
mate who’s moving down the ice, keeping the opposition off
balance and unable to put pressure on the puck carrier. Jamie
Kompon, when he was assistant coach of the Los Angeles
Kings, was in the habit of running team practice on one- touch
passes from the same position on the rink. Even if this move is
interleaved with a sequence of other moves in practice, if you
only do it at the same place on the rink or in the same sequence
of moves, you are only, as it were, throwing your beanbags into
the three- foot bucket. Kompon is onto the difference now and
has changed up his drills. Since we talked, he’s gone over to
the Chicago Blackhawks. We would have said “Keep an eye
on those Blackhawks” here, but as we revise to go into produc-
tion, Kompon and team have already won the Stanley Cup.
Perhaps no coincidence?
The benefi ts of variable practice for cognitive as opposed
to motor skills learning were shown in a recent experiment that
adapted the beanbag test to verbal learning: in this case, the
students solved anagrams– that is, they rearranged letters to
form words (tmoce becomes comet). Some subjects practiced
the same anagram over and over, whereas others practiced mul-
tiple anagrams for the word. When they were all tested on
the same anagram that the former group had practiced on,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 53
the latter group performed better on it! The same benefi ts
will apply whether you are practicing to identify tree species,
differentiate the principles of case law, or master a new com-
puter program.6
Developing Discrimination Skills
Compared to massed practice, a signifi cant advantage of in-
terleaving and variation is that they help us learn better how
to assess context and discriminate between problems, selecting
and applying the correct solution from a range of possibilities.
In math education, massing is embedded in the textbook: each
chapter is dedicated to a par tic u lar kind of problem, which you
study in class and then practice by working, say, twenty ex-
amples for homework before you move on. The next chapter
has a different type of problem, and you dive into the same
kind of concentrated learning and practice of that solution.
On you march, chapter by chapter, through the semester. But
then, on the fi nal exam, lo and behold, the problems are all
mixed up: you’re staring at each one in turn, asking yourself
Which algorithm do I use? Was it in chapter 5, 6, or 7? When
you have learned under conditions of massed or blocked repe-
tition, you have had no practice on that critical sorting pro cess.
But this is the way life usually unfolds: problems and oppor-
tunities come at us unpredictably, out of sequence. For our
learning to have practical value, we must be adept at discerning
“What kind of problem is this?” so we can select and apply an
appropriate solution.
Several studies have demonstrated the improved powers of
discrimination to be gained through interleaved and varied
practice. One study involved learning to attribute paintings to
the artists who created them, and another focused on learning
to identify and classify birds.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 54
Researchers initially predicted that massed practice in
identifying paint ers’ works (that is, studying many examples
of one paint er’s works before moving on to study many ex-
amples of another’s works) would best help students learn the
defi ning characteristics of each artist’s style. Massed practice
of each artist’s works, one artist at a time, would better enable
students to match artworks to artists later, compared to inter-
leaved exposure to the works of different artists. The idea was
that interleaving would be too hard and confusing; students
would never be able to sort out the relevant dimensions. The
researchers were wrong. The commonalities among one paint-
er’s works that the students learned through massed practice
proved less useful than the differences between the works of
multiple paint ers that the students learned through interleav-
ing. Interleaving enabled better discrimination and produced
better scores on a later test that required matching the works
with their paint ers. The interleaving group was also better
able to match paint ers’ names correctly to new examples of
their work that the group had never viewed during the learn-
ing phase. Despite these results, the students who participated
in these experiments persisted in preferring massed practice,
convinced that it served them better. Even after they took the
test and could have realized from their own per for mance that
interleaving was the better strategy for learning, they clung to
their belief that the concentrated viewing of paintings by one
artist was better. The myths of massed practice are hard to ex-
orcise, even when you’re experiencing the evidence yourself.7
The power of interleaving practice to improve discrim-
inability has been reaffi rmed in studies of people learning bird
classifi cation. The challenge here is more complex than it
might seem. One study addressed twenty different bird fami-
lies (thrashers, swallows, wrens, fi nches, and so on). Within
each family, students were presented with a dozen species
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 55
(brown thrasher, curve- billed thrasher, Bendire’s thrasher,
etc.). To identify a bird’s family, you consider a wide range of
traits like size, plumage, behavior, location, beak shape, iris
color, and so on. A problem in bird identifi cation is that mem-
bers of a family share many traits in common but not all. For
instance, many but not all thrashers have a long, slightly
hooked beak. There are traits that are typical of a family but
none that occur in all members of that family and can serve as
unique identifi ers. Because rules for classifi cation can only
rely on these characteristic traits rather than on defi ning traits
(ones that hold for every member), bird classifi cation is a mat-
ter of learning concepts and making judgments, not simply
memorizing features. Interleaved and variable practice
proved more helpful than massed practice for learning the
underlying concepts that unite and differentiate the species
and families.
To paraphrase a conclusion from one of these studies, re-
call and recognition require “factual knowledge,” considered
to be a lower level of learning than “conceptual knowledge.”
Conceptual knowledge requires an understanding of the in-
terrelationships of the basic elements within a larger structure
that enable them to function together. Conceptual knowledge
is required for classifi cation. Following this logic, some people
argue that practicing retrieval of facts and exemplars would
fall short as a strategy for comprehending general characteris-
tics that are required for higher levels of intellectual behavior.
The bird classifi cation studies suggest the opposite: strategies
of learning that help students identify and discern complex
prototypes (family resemblances) can help them grasp the kinds
of contextual and functional differences that go beyond the
acquisition of simple forms of knowledge and reach into the
higher sphere of comprehension.8
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 56
Improving Complex Mastery for
Medical Students
The distinction between straightforward knowledge of facts
and deeper learning that permits fl exible use of the knowledge
may be a little fuzzy, but it resonates with Douglas Larsen at
Washington University Medical School in St. Louis, who says
that the skills required for bird classifi cation are similar to
those required of a doctor diagnosing what’s wrong with a
patient. “The reason variety is important is it helps us see
more nuances in the things that we can compare against,” he
says. “That comes up a lot in medicine, in the sense that every
patient visit is a test. There are many layers of explicit and
implicit memory involved in the ability to discriminate be-
tween symptoms and their interrelationships.” Implicit mem-
ory is your automatic retrieval of past experience in interpret-
ing a new one. For example, the patient comes in and gives
you a story. As you listen, you’re consciously thinking through
your mental library to see what fi ts, while also unconsciously
polling your past experiences to help interpret what the pa-
tient is telling you. “Then you’re left with making a judgment
call,” Larsen says.9
Larsen is a pediatric neurologist seeing patients in the uni-
versity clinic and hospital. He’s a busy guy: in addition to
practicing medicine, he supervises the work of physicians in
training, he teaches, and as time permits, he conducts research
into medical education, working in collaboration with cogni-
tive psychologists. He’s drawing on all of these roles to redesign
and strengthen the school’s training curriculum in pediatric
neurology.
As you’d expect, the medical school employs a wide spec-
trum of instructional techniques. Besides classroom lectures
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 57
and labs, students practice resuscitations and other procedures
on high- tech mannequins in three simulation centers the
school maintains. Each “patient” is hooked up to monitors, has
a heartbeat, blood pressure, pupils that dilate and constrict,
and the ability to listen and speak, thanks to a controller who
observes and operates the mannequin from a back room. The
school also makes use of “standardized patients,” actors who
follow scripts and exhibit symptoms the students are required
to diagnose. The center is set up like a regular medical clinic,
and students must show profi ciency in all aspects of a patient
encounter, from bedside manner, physical exam skills, and re-
membering to ask the full spectrum of pertinent questions to
arriving at a diagnosis and treatment plan.
From studies of these teaching methods, Larsen has drawn
some interesting conclusions. First— and this may seem self-
evident: you do better on a test to demonstrate your compe-
tency at seeing patients in a clinic if your learning experience
has involved seeing patients in a clinic. Simply reading about
patients is not enough. However, on written fi nal exams, medi-
cal students who have examined patients and those who have
learned via written tests do equally well. The reason is that in
a written test the student is being given considerable structure
and being asked for specifi c information. When examining
the patient, you have to come up on your own with the right
mental model and the steps to follow. Having practiced these
steps on patients or simulated patients improves per for mance
relative to just reading about how to do it. In other words, the
kind of retrieval practice that proves most effective is one that
refl ects what you’ll be doing with the knowledge later. It’s not
just what you know, but how you practice what you know
that determines how well the learning serves you later. As the
sports adage goes, “practice like you play and you will play
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 58
like you practice.” This conclusion lines up with other research
into learning, and with some of the more sophisticated training
practices in science and industry, including the increasingly
broad use of simulators— not just for jet pi lots and medical
students but for cops, towboat pi lots, and people in almost
any fi eld you can name that requires mastery of complex knowl-
edge and skills and where the stakes for getting it right are
high. Book learning is not enough in these cases; actual hands-
on practice is needed.
Second, while it is important for a medical student to build
breadth by seeing a wide variety of patients manifesting dif-
ferent diseases, placing too much emphasis on variety runs
the risk of underemphasizing repeated retrieval practice on the
basics— on the typical way the disease presents itself in most
patients.
“There’s a certain set of diseases that we want you to know
very well,” Larsen says. “So we’re going to have you see these
standardized patients again and again, and assess your per-
for mance until you really have that down and can show us, ‘I
really do that well.’ It’s not either/or, variety versus repetition.
We need to make sure we’re appropriately balanced, and also
recognize that we sometimes fall into the trap of familiarity.
‘I’ve already seen a bunch of patients with this problem, I
don’t need to keep seeing them.’ But really, repeated retrieval
practice is crucial to long- term retention, and it’s a critical as-
pect of training.”
A third critical aspect is practical experience. For a doctor,
seeing patients provides a natural cycle of spaced retrieval
practice, interleaving, and variety. “So much of medicine is
based on learning by experience, which is why, after the fi rst
two years, we take students out of the classroom and start
putting them into clinical settings. A huge question is, what is
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 59
it about learning and experience that come together? We have
lots of experiences we don’t learn from. What differentiates
those that teach us something?”
One form of practice that helps us learn from experience,
as the neurosurgeon Mike Ebersold recounted in Chapter 2, is
refl ection. Some people are more given to the act of refl ection
than others, so Doug Larsen has broadened his research to
study how you might structure refl ection as an integral part
of the training, helping students cultivate it as a habit. He is
experimenting with requiring students to write daily or weekly
summaries of what they did, how it worked, and what they
might do differently next time to get better results. He specu-
lates that daily refl ection, as a form of spaced retrieval prac-
tice, is probably just as critical in the real- world application of
medicine as quizzing and testing are in building competencies
in medical school.
What about the classroom lecture, or the typical in- service
training conference that’s compressed over a couple of days?
Larsen fi gures his school’s interns spend 10 percent of their
time sitting in conferences listening to lectures. It may be a talk
on metabolic diseases, on different infectious diseases, or on
different drugs. The speaker puts the PowerPoint slideshow
up and starts going through it. Usually there’s lunch, and the
docs eat, listen, and leave.
“In my mind, considering how much forgetting occurs, it’s
very discouraging that we’re putting so many resources into
an activity that, the way it is currently done, learning research
tells us is so in effec tive. Medical students and residents go to
these conferences and they have no repeated exposure what-
soever to it. It’s just a matter of happenstance whether they end
up fi nally seeing a patient in the future whose problem relates
back to the conference topic. Otherwise, they don’t study the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 60
material, they are certainly not tested on the material, they
just listen then they walk out.”
At a minimum, Larsen would like to see something done to
interrupt the forgetting: give a quiz at the end of a conference
and follow it with spaced retrieval practice. “Make quizzing
a standard part of the culture and the curriculum. You just
know every week you’re going to get in your email your ten
questions that you need to work through.”
He asks, “How are we designing education and training
systems that prevent or at least intervene in the amount of
forgetting that goes on, and making sure they’re systematic
throughout the school in support of what we’re trying to ac-
complish? As it stands now, medical resident programs are
simply dictating: you have to have the curriculum, you have to
have the conferences, and it ends there. They present these big
conferences, they have all the faculty come through and give
their talks. And in the end, what we actually accomplish is re-
ally kind of minimal.”10
These Principles Are Broadly Applicable
College football might seem an incongruous place to look for
a learning model, but a conversation with Coach Vince Dooley
about the University of Georgia’s practice regime provides an
intriguing case.
Dooley is authoritative on the subject. As head coach of
Bulldogs football from 1964– 1988, he piled up an astonish-
ing 201 wins with only 77 losses and 10 tied games, winning
six conference titles and a national championship. He went
on to serve as the university’s athletic director, where he built
one of the most impressive athletics programs in the country.
We asked Coach Dooley how players go about mastering
all the complexities of the game. His theories of coaching and
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 61
training revolve around the weekly cycle of one Saturday game
to the next. In that short period there’s a lot to learn: studying
the opposition’s type of game in the classroom, discussing
offensive and defensive strategies for opposing it, taking the
discussion onto the playing fi eld, breaking the strategies down
to the movements of individual positions and trying them out,
knitting the parts into a whole, and then repeating the moves
until they run like clockwork.
While all this is going on, the players must also keep their
fundamental skills in top form: blocking, tackling, catching
the ball, bringing the ball in, carry ing the ball. Dooley be-
lieves that (1) you have to keep practicing the fundamentals
from time to time, forever, so you keep them sharp, other-
wise you’re cooked, but (2) you need to change it up in prac-
tice because too much repetition is boring. The position
coaches work with players individually on specifi c skills and
then on how they’re playing their positions during team
practice.
What else? There’s practicing the kicking game. There’s the
matter of each player’s mastery of the playbook. And there
are the special plays from the team’s repertoire that often
make the difference between winning and losing. In Dooley’s
narrative, the special plays stand as exemplars of spaced learn-
ing: they’re practiced only on Thursdays, so there’s always
a week between sessions, and the plays are run in a varied
sequence.
With all this to be done, it’s not surprising that a critical
aspect of the team’s success is a very specifi c daily and weekly
schedule that interleaves the elements of individual and team
practice. The start of every day’s practice is strictly focused on
the fundamentals of each player’s position. Next, players prac-
tice in small groups, working on maneuvers involving several
positions. These parts are gradually brought together and run
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 62
as a team. Play is speeded up and slowed down, rehearsed
mentally as well as physically. By midweek the team is run-
ning the plays in real time, full speed.
“You’re coming at it fast, and you’ve got to react fast,”
Dooley said. “But as you get closer to game time, you slow it
down again. Now it’s a kind of rehearsal without physical
contact. The play basically starts out the same each time, but
then what the opponent does changes it. So you’ve got to be
able to adjust to that. You start into the motion and say, ‘If
they react like this, then this is what you would do.’ You prac-
tice adjustments. If you do it enough times in different situa-
tions, then you’re able to do it pretty well in what ever comes
up on the fi eld.”11
How does a player get on top of his playbook? He takes
it home and goes over the plays in his mind. He may walk
through them. Everything in practice can’t be physically stren-
uous, Dooley said, or you’d wear yourself out, “so if the play
calls for you to step this way and then go the other way, you
can rehearse that in your mind, maybe just lean your body as
if to go that way. And then if something happens where you
have to adjust, you can do that mentally. By reading the play-
book, rehearsing it in your mind, maybe taking a step or two
to walk through it, you simulate something happening. So
that kind of rehearsal is added to what you get in the class-
room and on the fi eld.”
The fi nal quarterback meetings are held on Saturday morn-
ing, reviewing the game plan and running through it mentally.
The offensive coaches can make all the plans they want to
about the hypothetical game, but once play gets under way,
the execution rests in the hands of the quarterback.
For Coach Dooley’s team, it’s all there: retrieval, spacing,
interleaving, variation, refl ection, and elaboration. The sea-
soned quarterback going into Saturday’s game— mentally run-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 63
ning through the plays, the reactions, the adjustments— is
doing the same thing as the seasoned neurosurgeon who’s re-
hearsing what’s about to unfold in the operating room.
The Takeaway
Here’s a quick rundown of what we know today about massed
practice and its alternatives. Scientists will continue to deepen
our understanding.
We harbor deep convictions that we learn better through
single- minded focus and dogged repetition, and these beliefs
are validated time and again by the visible improvement that
comes during “practice- practice- practice.” But scientists call
this heightened per for mance during the acquisition phase of a
skill “momentary strength” and distinguish it from “underlying
habit strength.” The very techniques that build habit strength,
like spacing, interleaving, and variation, slow visible acquisi-
tion and fail to deliver the improvement during practice that
helps to motivate and reinforce our efforts.12
Cramming, a form of massed practice, has been likened to
binge- and- purge eating. A lot goes in, but most of it comes
right back out in short order. The simple act of spacing out
study and practice in installments and allowing time to elapse
between them makes both the learning and the memory stron-
ger, in effect building habit strength.
How big an interval, you ask? The simple answer: enough
so that practice doesn’t become a mindless repetition. At a
minimum, enough time so that a little forgetting has set in. A
little forgetting between practice sessions can be a good thing,
if it leads to more effort in practice, but you do not want so
much forgetting that retrieval essentially involves relearning
the material. The time periods between sessions of practice
let memories consolidate. Sleep seems to play a large role in
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 64
memory consolidation, so practice with at least a day in be-
tween sessions is good.
Something as simple as a deck of fl ashcards can provide an
example of spacing. Between repetitions of any individual
card, you work through many others. The German scientist
Sebastian Leitner developed his own system for spaced prac-
tice of fl ashcards, known as the Leitner box. Think of it as a
series of four fi le- card boxes. In the fi rst are the study materi-
als (be they musical scores, hockey moves, or Spanish vocabu-
lary fl ashcards) that must be practiced frequently because you
often make mistakes in them. In the second box are the cards
you’re pretty good at, and that box gets practiced less often
than the fi rst, perhaps by a half. The cards in the third box are
practiced less often than those in the second, and so on. If you
miss a question, make mistakes in the music, fl ub the one-
touch pass, you move it up a box so you will practice it more
often. The underlying idea is simply that the better your mas-
tery, the less frequent the practice, but if it’s important to retain,
it will never disappear completely from your set of practice
boxes.
Beware of the familiarity trap: the feeling that you know
something and no longer need to practice it. This familiarity
can hurt you during self- quizzing if you take shortcuts. Doug
Larsen says, “You have to be disciplined to say, ‘All right, I’m
going to make myself recall all of this and if I don’t, what did
I miss, how did I not know that?’ Whereas if you have an
instructor- generated test or quiz, suddenly you have to do it,
there’s an expectation, you can’t cheat, you can’t take mental
shortcuts around it, you simply have to do that.”
The nine quizzes Andy Sobel administers over the twenty-
six meetings of his po liti cal economics course are a simple
example of spaced retrieval practice, and of interleaving—
because he rolls forward into each successive quiz questions
pertaining to work from the beginning of the semester.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Mix Up Your Practice ê 65
Interleaving two or more subjects during practice also pro-
vides a form of spacing. Interleaving can also help you develop
your ability to discriminate later between different kinds of
problems and select the right tool from your growing toolkit
of solutions.
In interleaving, you don’t move from a complete practice
set of one topic to go to another. You switch before each prac-
tice is complete. A friend of ours describes his own experience
with this: “I go to a hockey class and we’re learning skating
skills, puck handling, shooting, and I notice that I get frus-
trated because we do a little bit of skating and just when I
think I’m getting it, we go to stick handling, and I go home
frustrated, saying, ‘Why doesn’t this guy keep letting us do
these things until we get it?’ ” This is actually the rare coach
who understands that it’s more effective to distribute practice
across these different skills than polish each one in turn. The
athlete gets frustrated because the learning’s not proceeding
quickly, but the next week he will be better at all aspects, the
skating, the stick handling, and so on, than if he’d dedicated
each session to polishing one skill.
Like interleaving, varied practice helps learners build a
broad schema, an ability to assess changing conditions and
adjust responses to fi t. Arguably, interleaving and variation
help learners reach beyond memorization to higher levels of
conceptual learning and application, building more rounded,
deep, and durable learning, what in motor skills shows up as
underlying habit strength.
Something the researchers call “blocked practice” is easily
mistaken for varied practice. It’s like the old LP rec ords that
could only play their songs in the same sequence. In blocked
practice, which is commonly (but not only) found in sports, a
drill is run over and over. The player moves from one station
to the next, performing a different maneuver at each station.
That’s how the LA Kings were practicing their one- touch pass
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 66
before they got religion and started changing it up. It would
be like always practicing fl ashcards in the same order. You
need to shuffl e your fl ashcards. If you always practice the
same skill in the same way, from the same place on the ice or
fi eld, in the same set of math problems, or during the same
sequence in a fl ight simulator, you’re starving your learning
on short rations of variety.
Spacing, interleaving, and variability are natural features of
how we conduct our lives. Every patient visit or football game
is a test and an exercise in retrieval practice. Every routine traf-
fi c stop is a test for a cop. And every traffi c stop is different,
adding to a cop’s explicit and implicit memory and, if she pays
attention, making her more effective in the future. The com-
mon term is “learning from experience.” Some people never
seem to learn. One difference, perhaps, between those who
do and don’t is whether they have cultivated the habit of re-
fl ection. Refl ection is a form of retrieval practice (What hap-
pened? What did I do? How did it work out?), enhanced with
elaboration (What would I do differently next time?).
As Doug Larsen reminds us, the connections between the
neurons in the brain are very plastic. “Making the brain work
is actually what seems to make a difference— bringing in more
complex networks, then using those circuits repeatedly, which
makes them more robust.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

67
When Mia Blundetto, age twenty- three,
fi rst lieutenant, U.S. Marine Corps, was billeted to logistics in
Okinawa, she had to get her ticket punched at jump school.
Describing that moment two years later, she said, “I hate fall-
ing, that feeling in your chest. There’s not a day in my life I
wanted to jump out of an airplane. I wouldn’t even go down
a water slide until I was in middle school. But I was in charge
of a platoon of Marines who rigged parachutes and jumped
out of airplanes and dropped cargo. It’s one of the most sought-
out billets as a logistics offi cer, very hard to get. My command-
ing offi cer said, you know, ‘You will be air delivery platoon
commander. If you don’t want to do that, I’ll put you some-
where else and we’ll let the next guy have that job.’ There’s no
way I could let somebody else have this job that everybody
wanted. So I looked him straight in the face and said, ‘Yes, sir,
I’ll jump out of planes.’ ”1
4
Embrace Diffi culties
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 68
Mia is fi ve feet seven inches of blonde ambition. Her father,
Frank, ex- marine, is in awe. “She’ll do more pull- ups than most
of the guys in her class. She has the Mary land state record in
the bench press, she was sixth in the NCAA for powerlifting.
Very soft- spoken; you just don’t see it coming.” When we had
Mia to ourselves, we asked her if Frank was blowing smoke.
She laughed. “He likes to exaggerate.” But when pressed, she
admitted to the facts. Until recently, women in the Marines
were required to do fl ex arm hangs instead of pull- ups (where
the chin crosses the plane of the pull- up bar), but the newly
toughened rules effective in 2014 require a minimum of three
pull- ups, the same as the minimum for men. Targets are eight
pull- ups for women, twenty for men. Mia does thirteen and is
shooting for twenty. As a student at the Naval Academy, she
qualifi ed two years in a row for nationals in powerlifting—
three sets each of bench press, squats, and dead lifts— setting
Mary land state rec ords.
So we know she’s tough. An aversion to falling is an in-
stinctual refl ex for self- preservation, but her decision to take
the assignment was a foregone conclusion, the kind of grit the
Marines and the Blundettos are known for. Mia has a sister
and two brothers. They’re all active duty Marines.
As it turned out, the third time Mia threw herself out the
jump door of a C130 troop transport at 1,250 feet, she plum-
meted right onto another soldier’s infl ated parachute. But we’re
getting ahead of the story.
We’re interested in her jump school training because it’s a
great example of how some diffi culties that elicit more effort
and that slow down learning— spacing, interleaving, mixing
up practice, and others— will more than compensate for their
incon ve nience by making the learning stronger, more precise,
and more enduring. Short- term impediments that make for
stronger learning have come to be called desirable diffi culties,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 69
a term coined by the psychologists Elizabeth and Robert
Bjork.2
The army’s jump school at Fort Benning, Georgia, is designed
to make sure you get it right and get it done, and it’s a model
of learning through desirable diffi culty. You are not allowed
to carry a notebook and write notes. You listen, watch, re-
hearse, and execute. Jump school is a place where testing is the
principal instructional medium, and the test is in the doing.
And, like all things military, jump school adheres to a strict
protocol. Get it right or get the boot.
The parachute landing fall, or PLF in military parlance, is a
technique of hitting the ground and rolling in a way that dis-
tributes the impact over the balls of your feet, the side of your
calf, the side of your thigh, the side of your hip, and the side
of your back. There are six possible directions in which to
execute the fall along the length of your body, determined by
conditions in the moment such as the direction of your drift,
the terrain, wind, and whether you’re oscillating as you ap-
proach the ground. In your fi rst exposure to this essential skill
of parachuting, you stand in a gravel pit where the PLF is ex-
plained and demonstrated. Then you try it: you practice falling
along different planes of the body, you get corrective feedback,
and you practice it again.
Over the ensuing week the diffi culty is notched up. You
stand on a platform two feet off the ground. On the command
“Ready,” you rock up on the balls of your feet, feet and knees
together, arms skyward. On the command “land,” you jump
off the wall and execute your PLF.
The test becomes more diffi cult. You clip yourself onto a
zip line a dozen feet off the ground, grab onto an overhead
T-bar, and drift down to a landing site, where, on command,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 70
you release and execute the PLF. You practice falling to the
right and left, forward and backward, mixing it up.
The diffi culty is increased again. You climb to a platform
twelve feet off the ground, where you practice strapping on
your harness, checking gear using the buddy system, and jump-
ing through a mockup of an airplane jump door. The harness
has risers like those from a parachute, hooked to a zip line
but allowing for the same long arc of suspension, and when
you jump, you have the momentary downward sensation of
free fall, followed by the broad oscillations of suspension as
you move along the cable, getting familiar with the motions
of a real jump. But at the bottom it’s the instructor, not you,
who pulls the release and drops you the last two or three feet
to earth, so now you’re executing your fall randomly, from all
directions, simulating what’s to come.
Next, you climb a thirty- four- foot tower to practice all the
elements of a jump and the choreography of a mass exit from
the aircraft, learning how it feels to fall from a height, how to
deal with equipment malfunctions, how to jump with a load
of heavy combat equipment.
Through demonstration and simulation, in escalating lev-
els of diffi culty that must be mastered in order to progress
from one to the next, you learn how to board the aircraft as a
part of a jump crew and participate in the command sequence
of thirty troops positioning for a mass exit over a drop zone.
How to get out the jump door correctly, how to count one-
thousand, two- thousand, three- thousand, four- thousand and
feel your chute deploy, or if you get to six- thousand, to pull
the cord on your reserve chute; how to deal with twisted sus-
pension lines, avoid collisions, hold into the wind, sort out a
tangled control line; how to avoid stealing air from another
jumper; the contingencies for landing in trees, water, or power
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 71
lines; how to jump by day or night, in different wind and
weather.
The knowledge and skills to be acquired are many, and
practice is spaced and interleaved, both by default, as you wait
your turn at each of the staging areas, airplane mock- ups,
jump platforms, and harness mechanisms, and by necessity, in
order to cover all that must be mastered and integrate the
disparate components. Finally, if you make it to week 3 with-
out washing out, you jump for real, making fi ve exits from a
military transport. With successful completion of the training
and fi ve successful jumps, you earn your jump wings and Air-
borne certifi cate.
On Mia’s third jump, she was fi rst in line at the port jump
door with fourteen jumpers queued behind her and another
fourteen queued behind the guy standing at the opposite door.
“So what the fi rst person does, in this case me, you hand off
your static line to the Sergeant Airborne, and there’s a light
and it’s red or green, and you get the one- minute warning,
then the thirty- second warning. I’m standing at this door for
a few minutes and it’s beautiful. It’s probably one of the pretti-
est things I’ve ever seen, but I was terrifi ed. There was nothing
to get in my way, nothing I had to think about except just wait-
ing, waiting for the ‘Go!’ The guy at the other door went, then
I jumped, and I’m counting one- thousand, two- thousand—and
suddenly, at four thousand, I had a green parachute wrapped
all around me! I’m thinking, There’s no way this can be my
parachute! I’d felt my chute open, I’d felt that lift. I realized
that I was on top of the fi rst jumper, so I just sort of swam out
of his parachute and steered away from him.”
Jumpers are staggered, but in the four turbulent seconds
until your chute opens you have neither awareness nor control
over your proximity to other jumpers. The incident, which
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 72
amounted to nothing, thanks to her training, is telling none-
theless. Had it frightened her? Not at all, she said. Mia was
prepared to handle it, and her confi dence gave her the cool to
“just sort of swim out.”
It’s one thing to feel confi dent of your knowledge; it’s some-
thing else to demonstrate mastery. Testing is not only a power-
ful learning strategy, it is a potent reality check on the accuracy
of your own judgment of what you know how to do. When
confi dence is based on repeated per for mance, demonstrated
through testing that simulates real- world conditions, you can
lean into it. Facing the jump door may always reawaken feel-
ings of terror, but the moment she’s out, Mia says, the fear
evaporates.
How Learning Occurs
To help you understand how diffi culty can be desirable, we’ll
briefl y describe here how learning occurs.
Encoding
Let’s imagine you’re Mia, standing in a gravel pit watching a
jump instructor explain and demonstrate the parachute land-
ing fall. The brain converts your perceptions into chemical
and electrical changes that form a mental repre sen ta tion of
the patterns you’ve observed. This pro cess of converting sen-
sory perceptions into meaningful repre sen ta tions in the brain
is still not perfectly understood. We call the pro cess encoding,
and we call the new repre sen ta tions within the brain memory
traces. Think of notes jotted or sketched on a scratchpad, our
short- term memory.
Much of how we run our day- to- day lives is guided by the
ephemera that clutter our short- term memory and are, fortu-
nately, soon forgotten— how to jigger the broken latch on the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 73
locker you used when you suited up at the gym today; re-
membering to stop for an oil change after your workout. But
the experiences and learning that we want to salt away for the
future must be made stronger and more durable— in Mia’s
case, the distinctive moves that will enable her to hit the ground
without breaking an ankle, or worse.3
Consolidation
The pro cess of strengthening these mental repre sen ta tions for
long- term memory is called consolidation. New learning is
labile: its meaning is not fully formed and therefore is easily
altered. In consolidation, the brain reorganizes and stabilizes
the memory traces. This may occur over several hours or lon-
ger and involves deep pro cessing of the new material, during
which scientists believe that the brain replays or rehearses the
learning, giving it meaning, fi lling in blank spots, and making
connections to past experiences and to other knowledge al-
ready stored in long- term memory. Prior knowledge is a pre-
requisite for making sense of new learning, and forming those
connections is an important task of consolidation. Mia’s con-
siderable athletic skills, physical self- awareness, and prior ex-
perience represent a large body of knowledge to which the
elements of a successful PLF would fi nd many connections. As
we’ve noted, sleep seems to help memory consolidation, but
in any case, consolidation and transition of learning to long-
term storage occurs over a period of time.
An apt analogy for how the brain consolidates new learn-
ing may be the experience of composing an essay. The fi rst
draft is rangy, imprecise. You discover what you want to say
by trying to write it. After a couple of revisions you have sharp-
ened the piece and cut away some of the extraneous points.
You put it aside to let it ferment. When you pick it up again
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 74
a day or two later, what you want to say has become clearer
in your mind. Perhaps you now perceive that there are three
main points you are making. You connect them to examples
and supporting information familiar to your audience. You
rearrange and draw together the elements of your argument
to make it more effective and elegant.
Similarly, the pro cess of learning something often starts out
feeling disor ga nized and unwieldy; the most important aspects
are not always salient. Consolidation helps or ga nize and solid-
ify learning, and, notably, so does retrieval after a lapse of some
time, because the act of retrieving a memory from long- term
storage can both strengthen the memory traces and at the same
time make them modifi able again, enabling them, for example,
to connect to more recent learning. This pro cess is called recon-
solidation. This is how retrieval practice modifi es and strength-
ens learning.
Suppose that on day 2 of jump school, you’re put on the
spot to execute your parachute landing fall and you struggle
to recall the correct posture and compose yourself— feet and
knees together, knees slightly bent, eyes on the horizon— but
in the refl ex to break your fall you throw your arm out, for-
getting to pull your elbows tight to your sides. You could have
broken the arm or dislocated your shoulder if this were the
real deal. This effort to reconstruct what you learned the day
before is ragged, but in making it, critical elements of the ma-
neuver come clearer and are reconsolidated for stronger mem-
ory. If you’re practicing something over and over in rapid- fi re
fashion, whether it’s your parachute landing fall or the conju-
gation of foreign verbs, you’re leaning on short- term memory,
and very little mental effort is required. You show gratifying
improvement rather quickly, but you haven’t done much to
strengthen the underlying repre sen ta tion of those skills. Your
per for mance in the moment is not an indication of durable
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 75
learning. On the other hand, when you let the memory recede
a little, for example by spacing or interleaving the practice,
retrieval is harder, your per for mance is less accomplished, and
you feel let down, but your learning is deeper and you will
retrieve it more easily in the future.4
Retrieval
Learning, remembering, and forgetting work together in in-
teresting ways. Durable, robust learning requires that we do
two things. First, as we recode and consolidate new material
from short- term memory into long- term memory, we must
anchor it there securely. Second, we must associate the mate-
rial with a diverse set of cues that will make us adept at recall-
ing the knowledge later. Having effective retrieval cues is an
aspect of learning that often goes overlooked. The task is
more than committing knowledge to memory. Being able to
retrieve it when we need it is just as important.
The reason we don’t remember how to tie knots even af-
ter we’ve been taught is because we don’t practice and apply
what we’ve learned. Say you’re in the city park one day and
come across an Ea gle Scout teaching knots. On a whim you
take an hour’s lesson. He demonstrates eight or ten specimens,
explains what each is useful for, has you practice tying them,
and sends you away with a short length of rope and a cheat
sheet. You head home committed to learning these knots, but
life is full, and you fail to practice them. They are soon forgot-
ten, and this story could end there, with no learning. But then,
as it happens, the following spring you buy a small fi shing
boat, and you want to attach an anchor on a line. With rope
in hand and feeling mildly stumped, you recall from your les-
son that there was a knot for putting a loop in the end of a
line. You are now practicing retrieval. You fi nd your cheat
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 76
sheet and relearn how to tie a bowline. You put a small loop
in the rope and then take the short end and draw it through,
silently reciting the little memory device you were given: the
rabbit comes up from his hole, goes around the tree, and goes
back down. Retrieval again. A little snugging- up, and there
you have your knot, a dandy piece of scoutcraft of the kind
you’d always fancied knowing. Later, you put a piece of rope
beside the chair where you watch TV and practice the bow-
line during commercials. You are doing spaced practice. Over
the coming weeks you’re surprised at how many little jobs are
easier if you have a piece of rope with a loop in the end. More
spaced practice. By August you have discovered every possi-
ble use and purpose in your life for the bowline knot.
Knowledge, skills, and experiences that are vivid and hold
signifi cance, and those that are periodically practiced, stay with
us. If you know you’re soon to throw yourself out of a troop
transport, you listen up good when they’re telling you when
and how to pull the rip cord on your reserve chute, or what
can go wrong at twelve hundred feet and how to “just sort of
swim out of it.” The mental rehearsal you conduct while lying
in your bunk too tired to sleep and wishing the next day was
already over and well- jumped is a form of spaced practice,
and that helps you, too.
Extending Learning: Updating Retrieval Cues
There’s virtually no limit to how much learning we can re-
member as long as we relate it to what we already know. In
fact, because new learning depends on prior learning, the more
we learn, the more possible connections we create for further
learning. Our retrieval capacity, though, is severely limited.
Most of what we’ve learned is not accessible to us at any given
moment. This limitation on retrieval is helpful to us: if every
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 77
memory were always readily to hand, you would have a hard
time sorting through the sheer volume of material to put your
fi nger on the knowledge you need at the moment: where did
I put my hat, how do I sync my electronic devices, what goes
into a perfect brandy Manhattan?
Knowledge is more durable if it’s deeply entrenched, mean-
ing that you have fi rmly and thoroughly comprehended a
concept, it has practical importance or keen emotional weight
in your life, and it is connected with other knowledge that
you hold in memory. How readily you can recall knowledge
from your internal archives is determined by context, by recent
use, and by the number and vividness of cues that you have
linked to the knowledge and can call on to help bring it forth.5
Here’s the tricky part. As you go through life, you often
need to forget cues associated with older, competing memo-
ries so as to associate them successfully with new ones. To
learn Italian in middle age, you may have to forget your high
school French, because every time you think “to be” and hope
to come up with the Italian essere, up pops etre, despite your
most earnest intentions. Traveling in En gland, you have to
suppress your cues to drive on the right side of the road so
you can establish reliable cues to stay on the left. Knowledge
that is well entrenched, like real fl uency in French or years of
experience driving on the right side of the road, is easily re-
learned later, after a period of disuse or after being interrupted
by competition for retrieval cues. It’s not the knowledge itself
that has been forgotten, but the cues that enable you to fi nd
and retrieve it. The cues for the new learning, driving on the
left, displace those for the old, driving on the right (if we are
lucky).
The paradox is that some forgetting is often essential for
new learning.6 When you change from a PC to a Mac, or from
one Windows platform to another, you have to do enormous
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 78
forgetting in order to learn the architecture of the new system
and become adept at manipulating it so readily that your at-
tention can focus on doing your work and not on working the
machine. Jump school training provides another example:
After their military ser vice, many paratroopers take an inter-
est in smoke jumping. Smokejumpers use different airplanes,
different equipment, and different jump protocols. Having
trained at the army’s jump school is cited as a distinct disad-
vantage for smoke jumping, because you have to unlearn one
set of procedures that you have practiced to the point of re-
fl ex and replace them with another. Even in cases where both
bodies of learning seem so similar to the uninitiated— jumping
out of an airplane with a parachute on your back— you may
have to forget the cues to a complex body of learning that you
possess if you are to acquire a new one.
We know this problem of reassigning cues to memory from
our own lives, even on the simplest levels. When our friend
Jack fi rst takes up with Joan, we sometimes call the couple
“Jack and Jill,” as the cue “Jack and” pulls up the old nursery
rhyme that’s so thoroughly embedded in memory. About the
time we have “Jack and” reliably cuing “Joan,” alas, Joan
throws him over, and he takes up with Jenny. Good grief!
Half of the time that we mean to say Jack and Jenny we catch
ourselves saying Jack and Joan. It would have been easier had
Jack picked up with Katie, so that the trailing K sound in his
name handed us off to the initiating K in hers, but no such
luck. Alliteration can be a handy cue, or a subversive one. In
all of this turmoil you don’t forget Jill, Joan, or Jenny, but you
“repurpose” your cues so that you can keep pace with the
changing opera of Jack’s life.7
It is a critical point that as you learn new things, you don’t
lose from long- term memory most of what you have learned
well in life; rather, through disuse or the reassignment of cues,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 79
you forget it in the sense that you’re unable to call it up easily.
For example, if you’ve moved several times, you may not be
able to recall a previous address from twenty years ago. But if
you are given a multiple choice test for the address, you can
probably pick it out easily, for it still abides, as it were, in the
uncleaned closet of your mind. If you have ever immersed
yourself in writing stories of your past, picturing the people
and places of earlier days, you may have been surprised by the
memories that started fl ooding back, things long forgotten
now coming to mind. Context can unleash memories, as when
the right key works to open an old lock. In Marcel Proust’s
Remembrance of Things Past, the narrator grieves over his
inability to recall the days of his adolescence in the French
village of his aunt and uncle, until one day the taste of a cake
dipped in lime blossom tea brings it all rushing back, all the
people and events he thought had long since been lost to time.
Most people have experiences like Proust’s when a sight or
sound or smell brings back a memory in full force, even some
episode you have not thought about in years.8
Easier Isn’t Better
Psychologists have uncovered a curious inverse relationship
between the ease of retrieval practice and the power of that
practice to entrench learning: the easier knowledge or a skill
is for you to retrieve, the less your retrieval practice will ben-
efi t your retention of it. Conversely, the more effort you have
to expend to retrieve knowledge or skill, the more the practice
of retrieval will entrench it.
Not long ago the California Polytechnic State University
baseball team, in San Luis Obispo, became involved in an in-
teresting experiment in improving their batting skills. They were
all highly experienced players, adept at making solid contact
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 80
with the ball, but they agreed to take extra batting practice
twice a week, following two different practice regimens, to
see which type of practice produced better results.
Hitting a baseball is one of the hardest skills in sports. It
takes less than half a second for a ball to reach home plate. In
this instant, the batter must execute a complex combination
of perceptual, cognitive, and motor skills: determining the
type of pitch, anticipating how the ball will move, and aiming
and timing the swing to arrive at the same place and moment
as the ball. This chain of perceptions and responses must be so
deeply entrenched as to become automatic, because the ball is
in the catcher’s mitt long before you can even begin to think
your way through how to connect with it.
Part of the Cal Poly team practiced in the standard way.
They practiced hitting forty- fi ve pitches, evenly divided into
three sets. Each set consisted of one type of pitch thrown
fi fteen times. For example, the fi rst set would be fi fteen fast-
balls, the second set fi fteen curveballs, and the third set fi f-
teen changeups. This was a form of massed practice. For each
set of 15 pitches, as the batter saw more of that type, he got
gratifyingly better at anticipating the balls, timing his swings,
and connecting. Learning seemed easy.
The rest of the team were given a more diffi cult practice
regimen: the three types of pitches were randomly interspersed
across the block of forty- fi ve throws. For each pitch, the bat-
ter had no idea which type to expect. At the end of the forty-
fi ve swings, he was still struggling somewhat to connect with
the ball. These players didn’t seem to be developing the profi –
ciency their teammates were showing. The interleaving and
spacing of different pitches made learning more arduous and
feel slower.
The extra practice sessions continued twice weekly for six
weeks. At the end, when the players’ hitting was assessed, the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 81
two groups had clearly benefi ted differently from the extra
practice, and not in the way the players expected. Those who
had practiced on the randomly interspersed pitches now
displayed markedly better hitting relative to those who had
practiced on one type of pitch thrown over and over. These
results are all the more interesting when you consider that
these players were already skilled hitters prior to the extra
training. Bringing their per for mance to an even higher level is
good evidence of a training regimen’s effectiveness.
Here again we see the two familiar lessons. First, that some
diffi culties that require more effort and slow down apparent
gains— like spacing, interleaving, and mixing up practice—
will feel less productive at the time but will more than com-
pensate for that by making the learning stronger, precise, and
enduring. Second, that our judgments of what learning strate-
gies work best for us are often mistaken, colored by illusions
of mastery.
When the baseball players at Cal Poly practiced curveball
after curveball over fi fteen pitches, it became easier for them to
remember the perceptions and responses they needed for that
type of pitch: the look of the ball’s spin, how the ball changed
direction, how fast its direction changed, and how long to wait
for it to curve. Per for mance improved, but the growing ease of
recalling these perceptions and responses led to little durable
learning. It is one skill to hit a curveball when you know a
curveball will be thrown; it is a different skill to hit a curveball
when you don’t know it’s coming. Baseball players need to
build the latter skill, but they often practice the former, which,
being a form of massed practice, builds per for mance gains on
short- term memory. It was more challenging for the Cal Poly
batters to retrieve the necessary skills when practice involved
random pitches. Meeting that challenge made the per for mance
gains painfully slow but also long lasting.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 82
This paradox is at the heart of the concept of desirable
diffi culties in learning: the more effort required to retrieve
(or, in effect, relearn) something, the better you learn it. In
other words, the more you’ve forgotten about a topic, the
more effective relearning will be in shaping your permanent
knowledge.9
How Effort Helps
Reconsolidating Memory
Effortful recall of learning, as happens in spaced practice, re-
quires that you “reload” or reconstruct the components of the
skill or material anew from long- term memory rather than
mindlessly repeating them from short- term memory.10 During
this focused, effortful recall, the learning is made pliable again:
the most salient aspects of it become clearer, and the conse-
quent reconsolidation helps to reinforce meaning, strengthen
connections to prior knowledge, bolster the cues and retrieval
routes for recalling it later, and weaken competing routes.
Spaced practice, which allows some forgetting to occur be-
tween sessions, strengthens both the learning and the cues
and routes for fast retrieval when that learning is needed
again, as when the pitcher tries to surprise the batter with a
curveball after pitching several fastballs. The more effort that
is required to recall a memory or to execute a skill, provided
that the effort succeeds, the more the act of recalling or exe-
cuting benefi ts the learning.11
Massed practice gives us the warm sensation of mastery
because we’re looping information through short- term mem-
ory without having to reconstruct the learning from long-
term memory. But just as with rereading as a study strategy,
the fl uency gained through massed practice is transitory, and
our sense of mastery is illusory. It’s the effortful pro cess of
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 83
reconstructing the knowledge that triggers reconsolidation
and deeper learning.
Creating Mental Models
With enough effortful practice, a complex set of interrelated
ideas or a sequence of motor skills fuse into a meaningful
whole, forming a mental model somewhat akin to a “brain
app”. Learning to drive a car involves a host of simultaneous
actions that require all of our powers of concentration and
dexterity while we are learning them. But over time, these
combinations of cognition and motor skills— for example,
the perceptions and maneuvers required to parallel park or
manipulate a stick shift— become ingrained as sets of mental
models associated with driving. Mental models are forms of
deeply entrenched and highly effi cient skills (seeing and un-
loading on a curveball) or knowledge structures (a memo-
rized sequence of chess moves) that, like habits, can be adapted
and applied in varied circumstances. Expert per for mance is
built through thousands of hours of practice in your area of
expertise, in varying conditions, through which you accumu-
late a vast library of such mental models that enables you to
correctly discern a given situation and instantaneously select
and execute the correct response.
Broadening Mastery
Retrieval practice that you perform at different times and in
different contexts and that interleaves different learning ma-
terial has the benefi t of linking new associations to the mate-
rial. This pro cess builds interconnected networks of knowl-
edge that bolster and support mastery of your fi eld. It also
multiplies the cues for retrieving the knowledge, increasing
the versatility with which you can later apply it.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 84
Think of an experienced chef who has internalized the
complex knowledge of how fl avors and textures interact; how
ingredients change form under heat; the differing effects to be
achieved with a saucepan versus a wok, with copper versus
cast iron. Think of the fl y fi sher who can sense the presence of
trout and accurately judge the likely species, make the right
choice of dry fl y, nymph, or streamer, judge the wind, and
know how and where to drop that fl y to make the trout rise.
Think of the kid on the BMX bike who can perform bunny-
hops, tail whips, 180s, and wall taps off the features of an
unfamiliar streetscape. Interleaving and variation mix up the
contexts of practice and the other skills and knowledge with
which the new material is associated. This makes our mental
models more versatile, enabling us to apply our learning to a
broader range of situations.
Fostering Conceptual Learning
How do humans learn concepts, for example the difference
between dogs and cats? By randomly coming across dissimi-
lar examples— Chihuahuas, tabby cats, Great Danes, picture
book lions, calico cats, Welsh terriers. Spaced and interleaved
exposure characterizes most of humans’ normal experience.
It’s a good way to learn, because this type of exposure strength-
ens the skills of discrimination— the pro cess of noticing par-
ticulars (a turtle comes up for air but a fi sh doesn’t)— and of
induction: surmising the general rule (fi sh can breathe in wa-
ter). Recall the interleaved study of birds in one case, and of
paintings in another, that helped learners distinguish between
bird types or the works of different paint ers while at the same
time learning to identify underlying commonalities of the
examples within a species or an artist’s body of work. When
asked about their preferences and beliefs, the learners thought
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 85
that the experience of studying multiple examples of one spe-
cies of bird before studying examples of another species re-
sulted in better learning. But the interleaved strategy, which
was more diffi cult and felt clunky, produced superior discrimi-
nation of differences between types, without hindering the
ability to learn commonalities within a type. As was true for
the baseball players’ batting practice, interleaving produced
diffi culty in retrieving past examples of a par tic u lar species,
which further solidifi ed the learning of which birds are repre-
sentative of a par tic u lar species.
The diffi culty produced by interleaving provides a second
type of boost to learning. Interleaved practice of related but
dissimilar geometric solids requires that you notice similari-
ties and differences in order to select the correct formula for
computing the volume. It’s thought that this heightened sensi-
tivity to similarities and differences during interleaved prac-
tice leads to the encoding of more complex and nuanced
repre sen ta tions of the study material— a better understanding
of how specimens or types of problems are distinctive and
why they call for a different interpretation or solution. Why a
northern pike will strike a spoon or a crankbait, say, but a
bass will happily powder his nose until you see fi t to throw
him a grub or a popper.12
Improving Versatility
The retrieval diffi culties posed by spacing, interleaving, and
variation are overcome by invoking the same mental pro-
cesses that will be needed later in applying the learning in ev-
eryday settings. By mimicking the challenges of practical ex-
perience, these learning strategies conform to the admonition
to “practice like you play, and you’ll play like you practice,”
improving what scientists call transfer of learning, which is
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 86
the ability to apply what you’ve learned in new settings. In the
Cal Poly batting practice experiment, the act of overcoming
the diffi culties posed by random types of pitches built a
broader “vocabulary” of mental pro cesses for discerning the
nature of the challenge (e.g., what the pitcher is throwing)
and selecting among possible responses than did the narrower
mental pro cesses suffi cient for excelling during massed, non-
varied experience. Recall the grade school students who proved
more adept at tossing beanbags into three- foot baskets after
having practiced tossing into two- and four- foot baskets, com-
pared to the students who only practiced tossing into three-
foot basket. Recall the increasing diffi culty and complexity of
the simulation training in jump school, or the cockpit simula-
tor of Matt Brown’s business jet.
Priming the Mind for Learning
When you’re asked to struggle with solving a problem before
being shown how to solve it, the subsequent solution is better
learned and more durably remembered. When you’ve bought
your fi shing boat and are attempting to attach an anchor line,
you’re far more likely to learn and remember the bowline knot
than when you’re standing in a city park being shown the bow-
line by a Boy Scout who thinks you would lead a richer life if
you had a handful of knots in your repertoire.
Other Learning Strategies That Incorporate
Desirable Diffi culties
We usually think of interference as a detriment to learning,
but certain kinds of interference can produce learning bene-
fi ts, and the positive effects are sometimes surprising. Would
you rather read an article that has normal type or type that’s
somewhat out of focus? Almost surely you would opt for the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 87
former. Yet when text on a page is slightly out of focus or
presented in a font that is a little diffi cult to decipher, people
recall the content better. Should the outline of a lecture follow
the precise fl ow of a chapter in a textbook, or is it better if the
lecture mismatches the text in some ways? It turns out that
when the outline of a lecture proceeds in a different order from
the textbook passage, the effort to discern the main ideas and
reconcile the discrepancy produces better recall of the con-
tent. In another surprise, when letters are omitted from words
in a text, requiring the reader to supply them, reading is slowed,
and retention improves. In all of these examples, the change
from normal pre sen ta tion introduces a diffi culty— disruption
of fl uency— that makes the learner work harder to construct
an interpretation that makes sense. The added effort increases
comprehension and learning. (Of course, learning will not
improve if the diffi culty completely obscures the meaning or
cannot be overcome.)13
The act of trying to answer a question or attempting to solve
a problem rather than being presented with the information
or the solution is known as generation. Even if you’re being
quizzed on material you’re familiar with, the simple act of fi ll-
ing in a blank has the effect of strengthening your memory of
the material and your ability to recall it later. In testing, being
required to supply an answer rather than select from multiple
choice options often provides stronger learning benefi ts. Hav-
ing to write a short essay makes them stronger still. Overcom-
ing these mild diffi culties is a form of active learning, where
students engage in higher- order thinking tasks rather than
passively receiving knowledge conferred by others.
When you’re asked to supply an answer or a solution to
something that’s new to you, the power of generation to aid
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 88
learning is even more evident. One explanation for this effect
is the idea that as you cast about for a solution, retrieving re-
lated knowledge from memory, you strengthen the route to a
gap in your learning even before the answer is provided to fi ll
it and, when you do fi ll it, connections are made to the related
material that is fresh in your mind from the effort. For ex-
ample, if you’re from Vermont and are asked to name the
capital of Texas you might start ruminating on possibilities:
Dallas? San Antonio? El Paso? Houston? Even if you’re un-
sure, thinking about alternatives before you hit on (or are
given) the correct answer will help you. (Austin, of course.)
Wrestling with the question, you rack your brain for some-
thing that might give you an idea. You may get curious, even
stumped or frustrated and acutely aware of the hole in your
knowledge that needs fi lling. When you’re then shown the so-
lution, a light goes on. Unsuccessful attempts to solve a prob-
lem encourage deep pro cessing of the answer when it is later
supplied, creating fertile ground for its encoding, in a way
that simply reading the answer cannot. It’s better to solve a
problem than to memorize a solution. It’s better to attempt a
solution and supply the incorrect answer than not to make
the attempt.14
The act of taking a few minutes to review what has been
learned from an experience (or in a recent class) and asking
yourself questions is known as refl ection. After a lecture or
reading assignment, for example, you might ask yourself:
What are the key ideas? What are some examples? How do
these relate to what I already know? Following an experience
where you are practicing new knowledge or skills, you might
ask: What went well? What could have gone better? What
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 89
might I need to learn for better mastery, or what strategies
might I use the next time to get better results?
Refl ection can involve several cognitive activities we have
discussed that lead to stronger learning. These include re-
trieval (recalling recently learned knowledge to mind), elabo-
ration (for example, connecting new knowledge to what you
already know), and generation (for example, rephrasing key
ideas in your own words or visualizing and mentally rehears-
ing what you might do differently next time).
One form of refl ection that is gaining currency in class-
room settings is called “write to learn.” In essence, students
refl ect on a recent class topic in a brief writing assignment,
where they may express the main ideas in their own words
and relate them to other concepts covered in class, or perhaps
outside class. (For an example, read in Chapter 8 about the
“learning paragraphs” Mary Pat Wenderoth assigns her stu-
dents in her human physiology course.) The learning benefi ts
from the various cognitive activities that are engaged during
refl ection (retrieval, elaboration, generation) have been well
established through empirical studies.
An interesting recent study specifi cally examined “write to
learn” as a learning tool. Over eight hundred college students
in several introductory psychology classes listened to lectures
throughout the semester. Following the pre sen ta tion of a key
concept within a given lecture, the instructor asked students
to write to learn. Students generated their own written sum-
maries of the key ideas, for example restating concepts in their
own words and elaborating on the concepts by generating
examples of them. For other key concepts presented during
the lecture, students were shown a set of slides summarizing
the concepts and spent a few minutes copying down key ideas
and examples verbatim from the slide.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 90
What was the result? On exams administered during the
semester, the students were asked questions that assessed their
understanding of the key concepts that they had worked on
learning. They scored signifi cantly (approximately half a let-
ter grade) better on the ones they had written about in their
own words than on those they had copied, showing that it
was not simply exposure to the concepts that produced the
learning benefi t. In follow- up tests approximately two months
later to mea sure retention, the benefi ts of writing to learn as a
form of refl ection had dropped but remained robust.15
Failure and the Myth of Errorless Learning
In the 1950s and 1960s, the psychologist B. F. Skinner advo-
cated the adoption of “errorless learning” methods in educa-
tion in the belief that errors by learners are counterproductive
and result from faulty instruction. The theory of errorless
learning gave rise to instructional techniques in which learn-
ers were spoonfed new material in small bites and immedi-
ately quizzed on them while they still remained on the tongue,
so to speak, fresh in short- term memory and easily spit out
onto the test form. There was virtually no chance of making
an error. Since those days we’ve come to understand that re-
trieval from short- term memory is an in effec tive learning
strategy and that errors are an integral part of striving to in-
crease one’s mastery over new material. Yet in our Western
culture, where achievement is seen as an indicator of ability,
many learners view errors as failure and do what they can to
avoid committing them. The aversion to failure may be rein-
forced by instructors who labor under the belief that when
learners are allowed to make errors it’s the errors that they
will learn.16
This is a misguided impulse. When learners commit errors
and are given corrective feedback, the errors are not learned.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 91
Even strategies that are highly likely to result in errors, like
asking someone to try to solve a problem before being shown
how to do it, produce stronger learning and retention of the
correct information than more passive learning strategies, pro-
vided there is corrective feedback. Moreover, people who are
taught that learning is a struggle that often involves making
errors will go on to exhibit a greater propensity to tackle
tough challenges and will tend to see mistakes not as failures
but as lessons and turning points along the path to mastery.
To see the truth of this, look no further than the kid down the
hall who is deeply absorbed in working his avatar up through
the levels of an action game on his Xbox video console.
A fear of failure can poison learning by creating aversions
to the kinds of experimentation and risk taking that charac-
terize striving, or by diminishing per for mance under pressure,
as in a test setting. In the latter instance, students who have a
high fear of making errors when taking tests may actually do
worse on the test because of their anxiety. Why? It seems that
a signifi cant portion of their working memory capacity is ex-
pended to monitor their per for mance (How am I doing? Am I
making mistakes?), leaving less working memory capacity
available to solve the problems posed by the test. “Working
memory” refers to the amount of information you can hold in
mind while working through a problem, especially in the face
of distraction. Everyone’s working memory is severely limited,
some more than others, and larger working memory capaci-
ties correlate with higher IQs.
To explore this theory about how fear of failure reduces
test per for mance, sixth graders in France were given very dif-
fi cult anagram problems that none of them could solve. After
struggling unsuccessfully with the problems, half of the kids
received a ten- minute lesson in which they were taught that
diffi culty is a crucial part of learning, errors are natural and
to be expected, and practice helps, just as in learning to ride a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 92
bicycle. The other kids were simply asked how they had gone
about trying to solve the anagrams. Then both groups were
given a diffi cult test whose results provided a mea sure of
working memory. The kids who had been taught that errors
are a natural part of learning showed signifi cantly better use
of working memory than did the others. These children did not
expend their working memory capacity in agonizing over the
diffi culty of the task. The theory was further tested in varia-
tions of the original study. The results support the fi nding that
diffi culty can create feelings of incompetence that engender
anxiety, which in turn disrupts learning, and that “students do
better when given room to struggle with diffi culty.”17
These studies point out that not all diffi culties in learning
are desirable ones. Anxiety while taking a test seems to repre-
sent an undesirable diffi culty. These studies also underscore
the importance of learners understanding that diffi culty in
learning new things is not only to be expected but can be ben-
efi cial. To this point, the French study stands on the shoulders
of many others, among the foremost being the works of Carol
Dweck and of Anders Ericsson, both of whom we discuss in
Chapter 7 in relation to the topic of increasing intellectual
abilities. Dweck’s work shows that people who believe that
their intellectual ability is fi xed from birth, wired in their
genes, tend to avoid challenges at which they may not succeed,
because failure would appear to be an indication of lesser na-
tive ability. By contrast, people who are helped to understand
that effort and learning change the brain, and that their intel-
lectual abilities lie to a large degree within their own control,
are more likely to tackle diffi cult challenges and persist at
them. They view failure as a sign of effort and as a turn in the
road rather than as a mea sure of inability and the end of the
road. Anders Ericsson’s work investigating the nature of expert
per for mance shows that to achieve expertise requires thou-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 93
sands of hours of dedicated practice in which one strives to
surpass one’s current level of ability, a pro cess in which failure
becomes an essential experience on the path to mastery.
The study of the French sixth graders received wide public-
ity and inspired the staging of a “Festival of Errors” by an elite
graduate school in Paris, aimed at teaching French schoolchil-
dren that making mistakes is a constructive part of learning:
not a sign of failure but of effort. Festival organizers argued
that modern society’s focus on showing results has led to a
culture of intellectual timorousness, starving the kind of intel-
lectual ferment and risk-taking that produced the great dis-
coveries that mark French history.
It doesn’t require a great conceptual leap to get from Par-
is’s “Festival of Errors” to San Francisco’s “FailCon,” where
technology entrepreneurs and venture capitalists meet once a
year to study failures that gave them critical insights they
needed in order to pivot in their business strategies so as to
succeed. Thomas Edison called failure the source of inspira-
tion, and is said to have remarked, “I’ve not failed. I’ve just
found 10,000 ways that don’t work.” He argued that perse-
verance in the face of failure is the key to success.
Failure underlies the scientifi c method, which has advanced
our understanding of the world we inhabit. The qualities of
per sis tence and resiliency, where failure is seen as useful infor-
mation, underlie successful innovation in every sphere and lie
at the core of nearly all successful learning. Failure points to
the need for redoubled effort, or liberates us to try different
approaches. Steve Jobs, in his remarks to the Stanford Univer-
sity graduating class of 2005, spoke of being fi red at age thirty
in 1985 from Apple Computer, which he had cofounded. “I
didn’t see it then, but it turned out that getting fi red from Ap-
ple was the best thing that could have ever happened to me.
The heaviness of being successful was replaced by the lightness
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 94
of being a beginner again, less sure about everything. It freed
me to enter one of the most creative periods of my life.”
It’s not the failure that’s desirable, it’s the dauntless effort
despite the risks, the discovery of what works and what doesn’t
that sometimes only failure can reveal. It’s trusting that trying
to solve a puzzle serves us better than being spoon- fed the so-
lution, even if we fall short in our fi rst attempts at an answer.
An Example of Generative Learning
As we said earlier, the pro cess of trying to solve a problem
without the benefi t of having been taught how is called gen-
erative learning, meaning that the learner is generating the
answer rather than recalling it. Generation is another name
for old- fashioned trial and error. We’re all familiar with the
stories of skinny kids in Silicon Valley garages messing around
with computers and coming out billionaires. We would like to
serve up a different kind of example here: Minnesota’s Bonnie
Blodgett.
Bonnie is a writer and a self- taught ornamental gardener in
a constant argument with a voice in her head that keeps nat-
tering about all the ways her latest whim is sure to go haywire
and embarrass her. While she is a woman of strong aesthetic
sensibilities, she is also one of epic doubts. Her “learning
style” might be called leap- before- you- look- because- if- you-
look- fi rst- you- probably- won’t-like- what- you- see. Her garden
writing appears under the name “The Blundering Gardener.”
This moniker is a way of telling her voices of doubt to take a
hike, because what ever the consequences of the next whim,
she’s already rolling up her sleeves. “Blundering means that
you get going on your project before you have fi gured out
how to do it in the proper way, before you know what you’re
getting into. For me, the risk of knowing what you’re getting
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 95
into is that it becomes an overwhelming obstacle to getting
started.”18
Bonnie’s success shows how struggling with a problem
makes for strong learning, and how a sustained commitment
to advancing in a par tic u lar fi eld of endeavor through trial-
and- error effort leads to complex mastery and greater knowl-
edge of the interrelationships of things. When we spoke, she
had just traveled to southern Minnesota to meet with a group
of farmers who wanted her gardening insights on a gamut of
issues ranging from layout and design to pest control and ir-
rigation. In the years since she fi rst sank her spade, Bonnie’s
garden writing has won national recognition and found a de-
voted following far and wide through many outlets, and her
garden has become a destination for other gardeners.
She came to ornamental gardening about the time she
found herself eyeballing middle age. She had no training, just
a burning desire to get her hands dirty making beautiful spaces
on the corner lot of the home she shares with her husband in
a historic neighborhood of St. Paul.
“The experience of creating beauty calms me down,” she
says, but it’s strictly a discovery pro cess. She has always been
a writer, and some years after having launched herself into the
garden, she began publishing the Garden Letter, a quarterly
for northern gardeners in which she chronicles her exploits,
mishaps, lessons, and successes. She writes the same way that
she gardens, with boldness and self- effacing humor, passing
along the entertaining snafus and unexpected insights that are
the fruits of experience. In calling herself the Blundering Gar-
dener, she is giving herself and us, her readers, permission to
make mistakes and get on with it.
Note that in writing about her experiences, Bonnie is en-
gaging two potent learning pro cesses beyond the act of gar-
dening itself. She is retrieving the details and the story of what
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 96
she has discovered— say, about an experiment in grafting two
species of fruit trees— and then she is elaborating by explain-
ing the experience to her readers, connecting the outcome to
what she already knows about the subject or has learned as a
result.
Her leap- taking impulses have taken her through vast
swaths of the plant kingdom, of course, and deeply into the
Latin nomenclature and the classic horticultural literature.
These impulses have also drawn her into the aesthetics of
space and structure and the mechanics thereof: building stone
walls; digging and wiring water features; putting a cupola on
the garage; building paths, stairs, and gates; ripping out a
Gothic picket fence and reusing the wood to create something
more open and with stronger horizontal lines to pull down
the soaring verticality of her three- story Victorian house and
connect it with the gardens that surround it; making the out-
door spaces airier and more easily seen from the street, while
still circumscribed, so as to impart that essential sense of pri-
vacy that makes a garden a room of its own. Her spaces are
idiosyncratic and asymmetrical, giving the illusion of having
evolved naturally, yet they cohere, through the repetition of
textures, lines, and geometry.
A simple example of how she has backed into more and
more complex mastery is the manner in which she came to
embrace plant classifi cation and the Latin terminology. “When
I started, the world of plants was a completely foreign lan-
guage to me. I would read gardening books and be completely
lost. I didn’t know what plant names were, common or Latin.
I wasn’t thinking about learning this stuff, ever. I’m like, Why
would you want to do that? Why wouldn’t you just get out-
side and dig a hole and put something in it?” What she rel-
ished were pictures that gave her ideas and passages of text
where the designers used phrases like “my pro cess” in describing
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 97
how they had achieved the desired effect. It was the posses-
sive pronoun, my pro cess, that affi rmed Bonnie in her head-
long rush to learn by doing. The notion is that every gardener’s
pro cess is uniquely his or her own. Bonnie’s pro cess did not
involve taking direction from experts, much less mastering
the Linnaean taxonomy or the Latin names of what she stuck
in holes and dragged her water hose to. But as she thrashed
around, working to achieve in dirt the magical spaces that
danced in her mind, she came to Latin and Linnaeus despite
herself.
“You begin to discover that the Latin names are helpful.
They can give you a shortcut to understanding the nature of
the plants, and they can help you remember. Tardiva, which
is a species name, comes after hydrangea, which is a genus.”
Bonnie had taken Latin in high school, along with French,
and of course En glish, and the cues to those memories began
to reawaken. “I can easily see that tardiva means late, like
tardy. The same word comes after many plant varieties, so
you see the genus and then the species is tardiva, and now
you know that par tic u lar plant is a late bloomer. So you be-
gin to realize that the Latin names are a way of helping you
remember, and you fi nd yourself using them more and more.
Also you remember plants better, because it’s second nature
to you that procumbus means prostrate, crawling on the
ground. It makes sense. So now it’s not so hard to remember
that par tic u lar species name when it’s attached to a genus.
It’s also important to know the Latin names because then
you can be absolutely specifi c about a plant. Plants have
common names, and common names are regional. Actaea
racemosa has a common name of black cohosh, but it’s also
known as snakeroot, and those names are often given to
other plants. There’s only one Actaea racemosa.” Gradually,
and despite her inclination to resist, she came to grasp the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 98
classical taxonomy of ornamental plants and to appreciate
how Linnaeus’s schema frames family connections and com-
municates attributes.
Bonnie said that the farmers she had recently met were
particularly interested in what she has learned about the ad-
vantages of composting and earthworms over chemical fertil-
izers for building nutrients and soil aeration, and how to get
strong root growth on low rations of water through a home-
made system of drip irrigation. She paused in recounting her
meeting with them, refl ecting on how all of this knowledge
has sneaked up on her. It was never something she set out to
conquer. “Look, blundering’s really not a bad thing. It’s a good
thing in that you get stuff done. A lot of people, when they
contemplate the enormity of the task and they see all that’s
entailed, they’re stopped in their tracks.”
Of course, in some settings— like learning to jump out of
airplanes and walk away with your life— blundering is not
the optimal learning strategy.
Undesirable Diffi culties
Elizabeth and Robert Bjork, who coined the phrase “desirable
diffi culties,” write that diffi culties are desirable because “they
trigger encoding and retrieval pro cesses that support learning,
comprehension, and remembering. If, however, the learner
does not have the background knowledge or skills to respond
to them successfully, they become undesirable diffi culties.”19
Cognitive scientists know from empirical studies that testing,
spacing, interleaving, variation, generation, and certain kinds
of contextual interference lead to stronger learning and reten-
tion. Beyond that, we have an intuitive sense of what kinds of
diffi culties are undesirable but, for lack of the needed research,
we cannot yet be defi nitive.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 99
Clearly, impediments that you cannot overcome are not
desirable. Outlining a lesson in a sequence different from the
one in the textbook is not a desirable diffi culty for learners
who lack the reading skills or language fl uency required to
hold a train of thought long enough to reconcile the discrep-
ancy. If your textbook is written in Lithuanian and you don’t
know the language, this hardly represents a desirable diffi –
culty. To be desirable, a diffi culty must be something learners
can overcome through increased effort.
Intuitively it makes sense that diffi culties that don’t
strengthen the skills you will need, or the kinds of challenges
you are likely to encounter in the real- world application of
your learning, are not desirable. Having somebody whisper
in your ear while you read the news may be essential training
for a TV anchor. Being heckled by role- playing protestors
while honing your campaign speech may help train up a poli-
tician. But neither of these diffi culties is likely to be helpful for
Rotary Club presidents or aspiring YouTube bloggers who
want to improve their stage presence. A cub towboat pi lot on
the Mississippi might be required in training to push a string
of high- riding empty barges into a lock against a strong side
wind. A baseball player might practice hitting with a weight
on his bat to strengthen his swing. You might teach a football
player some of the principles of ballet for learning balance and
movement, but you probably would not teach him the tech-
niques for an effective golf drive or backhand tennis serve.
Is there an overarching rule that determines the kinds of
impediments that make learning stronger? Time and further
research may yield an answer. But the kinds of diffi culties
we’ve just described, whose desirability is well documented,
offer a large and diverse toolkit already at hand.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 100
The Takeaway
Learning is at least a three- step pro cess: initial encoding of
information is held in short- term working memory before be-
ing consolidated into a cohesive repre sen ta tion of knowledge
in long- term memory. Consolidation reorganizes and stabi-
lizes memory traces, gives them meaning, and makes con-
nections to past experiences and to other knowledge already
stored in long- term memory. Retrieval updates learning and
enables you to apply it when you need it.
Learning always builds on a store of prior knowledge. We
interpret and remember events by building connections to
what we already know.
Long- term memory capacity is virtually limitless: the more
you know, the more possible connections you have for adding
new knowledge.
Because of the vast capacity of long- term memory, having
the ability to locate and recall what you know when you need
it is key; your facility for calling up what you know depends
on the repeated use of the information (to keep retrieval routes
strong) and on your establishing powerful retrieval cues that
can reactivate the memories.
Periodic retrieval of learning helps strengthen connections
to the memory and the cues for recalling it, while also weak-
ening routes to competing memories. Retrieval practice that’s
easy does little to strengthen learning; the more diffi cult the
practice, the greater the benefi t.
When you recall learning from short- term memory, as in
rapid- fi re practice, little mental effort is required, and little
long- term benefi t accrues. But when you recall it after some
time has elapsed and your grasp of it has become a little rusty,
you have to make an effort to reconstruct it. This effortful
retrieval both strengthens the memory but also makes the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Embrace Difficulties ê 101
learning pliable again, leading to its reconsolidation. Recon-
solidation helps update your memories with new information
and connect them to more recent learning.
Repeated effortful recall or practice helps integrate learn-
ing into mental models, in which a set of interrelated ideas or
a sequence of motor skills are fused into a meaningful whole
that can be adapted and applied in later settings. Examples
are the perceptions and manipulations involved in driving a
car or in knocking a curveball out of the ballpark.
When practice conditions are varied or retrieval is inter-
leaved with the practice of other material, we increase our
abilities of discrimination and induction and the versatility
with which we can apply the learning in new settings at a
later date. Interleaving and variation build new connections,
expanding and more fi rmly entrenching knowledge in mem-
ory and increasing the number of cues for retrieval.
Trying to come up with an answer rather than having it
presented to you, or trying to solve a problem before being
shown the solution, leads to better learning and longer reten-
tion of the correct answer or solution, even when your at-
tempted response is wrong, so long as corrective feedback is
provided.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

102
At the root of our effectiveness is our
ability to grasp the world around us and to take the mea sure
of our own per for mance. We’re constantly making judgments
about what we know and don’t know and whether we’re ca-
pable of handling a task or solving a problem. As we work at
something, we keep an eye on ourselves, adjusting our think-
ing or actions as we progress.
Monitoring your own thinking is what psychologists call
metacognition (meta is Greek for “about”). Learning to be
accurate self- observers helps us to stay out of blind alleys,
make good decisions, and refl ect on how we might do better
next time. An important part of this skill is being sensitive to
the ways we can delude ourselves. One problem with poor
judgment is that we usually don’t know when we’ve got it.
Another problem is the sheer scope of the ways our judgment
can be led astray.1
5
Avoid Illusions of Knowing
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 103
In this chapter we discuss perceptual illusions, cognitive bi-
ases, and distortions of memory that commonly mislead peo-
ple. Then we suggest techniques for keeping your judgment
squared with reality.
The consequences of poor judgment fi ll the daily papers.
During the summer of 2008, three stickup artists in Minne-
apolis had a system going of phoning in large fast- food orders
and then relieving the delivery man of all the goods and cash
he carried. As a livelihood it was a model of simplicity. They
kept at it, failing to consider the wisdom of always placing
their orders from the same two cell phones and taking deliv-
ery at the same two addresses.
David Garman, a Minneapolis cop, was working under-
cover that summer. “It was getting more aggressive. At the
beginning, it was ‘maybe they had a gun,’ then all of a sudden
there were a couple of guns, and then they were hurting the
people when they were robbing them.”
It was a night in August when Garman got a call about a
large order phoned in to a Chinese restaurant. He or ga nized a
small team on short notice and prepared to pose as the deliv-
ery guy. He pulled on a bulletproof vest, covered it with a ca-
sual shirt, and shoved his .45 automatic into his pants. While
his colleagues staked out positions near the delivery address,
Garman picked up the food, drove there, and parked with his
brights shining on the front door. He’d cut a slit in the bottom
of the food bag and tucked a .38 inside to rest in his hand as
he carried the package. “The .38 has a covered hammer on it,
so I can shoot it in a bag. If I were to put the automatic in
there, it’d jam and I’d be screwed.”
So I walk up with the package and I say, “Hey, sir, did you
order some food?” He says, “Yup,” and I’m thinking this guy’s
really just going to pay me and I’m going to be out of here,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 104
and this is going to be the dumbest thing we’ve ever done. I’m
thinking if he hands me $40, I don’t even know how much
this food is. But he turns his head to look halfway back and
two other guys start to come up, and as they’re walking to-
wards me they fl ip hoods over their heads. That’s when I
know it’s game time. The fi rst guy whips a gun out of his
pocket and racks it and puts it to my head all in one motion,
saying, “Give me everything you’ve got motherfucker or I’ll
kill you.” I ended up shooting him through the bag. It was
four rounds.2
Not such a great livelihood after all. The guy was hit low
and survived, although he is a lesser man as a result. Garman
would have aimed higher if the food package hadn’t been so
heavy, and he took a lesson from the experience: he’s better
prepared for the next time, though he’d rather we didn’t de-
scribe just how.
We like to think we’re smarter than the average doodle,
and even if we’re not, we feel affi rmed in this delusion each
year when the newest crop of Darwin Awards circulates by
email, that short list of self- infl icted fatalities caused by spec-
tacularly poor judgment, as in the case of the attorney in To-
ronto who was demonstrating the strength of the windows in
his twenty- two- story offi ce tower by throwing his shoulder
against the glass when he broke it and fell through. The truth
is that we’re all hardwired to make errors in judgment. Good
judgment is a skill one must acquire, becoming an astute
observer of one’s own thinking and per for mance. We start at
a disadvantage for several reasons. One is that when we’re
incompetent, we tend to overestimate our competence and see
little reason to change. Another is that, as humans, we are read-
ily misled by illusions, cognitive biases, and the stories we con-
struct to explain the world around us and our place within
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 105
it. To become more competent, or even expert, we must learn
to recognize competence when we see it in others, become
more accurate judges of what we ourselves know and don’t
know, adopt learning strategies that get results, and fi nd ob-
jective ways to track our progress.
Two Systems of Knowing
In his book Thinking, Fast and Slow, Daniel Kahneman de-
scribes our two analytic systems. What he calls System 1 (or
the automatic system) is unconscious, intuitive, and immedi-
ate. It draws on our senses and memories to size up a situation
in the blink of an eye. It’s the running back dodging tackles in
his dash for the end zone. It’s the Minneapolis cop, walking
up to a driver he’s pulled over on a chilly day, taking evasive
action even before he’s fully aware that his eye has seen a bead
of sweat run down the driver’s temple.
System 2 (the controlled system) is our slower pro cess of
conscious analysis and reasoning. It’s the part of thinking that
considers choices, makes decisions, and exerts self- control.
We also use it to train System 1 to recognize and respond to
par tic u lar situations that demand refl exive action. The run-
ning back is using System 2 when he walks through the moves
in his playbook. The cop is using it when he practices taking a
gun from a shooter. The neurosurgeon is using it when he re-
hearses his repair of the torn sinus.
System 1 is automatic and deeply infl uential, but it is sus-
ceptible to illusion, and you depend on System 2 to help you
manage yourself: by checking your impulses, planning ahead,
identifying choices, thinking through their implications, and
staying in charge of your actions. When a guy in a restaurant
walks past a mother with an infant and the infant cries out
“Dada!” that’s System 1. When the blushing mother says,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 106
“No, dear, that’s not Dada, that’s a man,” she is acting as a
surrogate System 2, helping the infant refi ne her System 1.
System 1 is powerful because it draws on our accumulated
years of experience and our deep emotions. System 1 gives us
the survival refl ex in moments of danger, and the astonishing
deftness earned through thousands of hours of deliberate
practice in a chosen fi eld of expertise. In the interplay be-
tween Systems 1 and 2— the topic of Malcolm Gladwell’s
book Blink—your instantaneous ability to size up a situation
plays against your capacity for skepticism and thoughtful
analysis. Of course, when System 1’s conclusions arise out of
misperception or illusion, they can steer you into trouble.
Learning when to trust your intuition and when to question it
is a big part of how you improve your competence in the
world at large and in any fi eld where you want to be expert.
It’s not just the dullards who fall victim. We all do, to varying
degrees. Pi lots, for example, are susceptible to a host of per-
ceptual illusions. They are trained to beware of them and to
use their instruments to know that they’re getting things right.
A frightening example with a happy ending is China Airlines
Flight 006 on a winter day in 1985. The Boeing 747 was
41,000 feet above the Pacifi c, almost ten hours into its eleven-
hour fl ight from Taipei to LA, when engine number 4 lost
power. The plane began to lose airspeed. Rather than taking
manual control and descending below 30,000 feet to restart
the engine, as prescribed in the fl ight book, the crew held at
41,000 with the autopi lot engaged and attempted a restart.
Meanwhile, loss of the outboard engine gave the plane asym-
metrical thrust. The autopi lot tried to correct for this and
keep the plane level, but as the plane continued to slow it
also began to roll to the right. The captain was aware of the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 107
deceleration, but not the extent to which the plane had en-
tered a right bank; his System 1 clue would have been his
vestibular refl ex— how the inner ear senses balance and
spatial orientation—but because of the plane’s trajectory,
he had the sensation of fl ying level. His System 2 clues would
have been a glimpse at the horizon and his instruments. Cor-
rect procedure called for applying left rudder to help raise the
right wing, but his System 2 focus was on the airspeed indica-
tor and on the efforts of the fi rst offi cer and engineer to re-
start the engine.
As its bank increased, the plane descended through 37,000
feet into high clouds, which obscured the horizon. The cap-
tain switched off the autopi lot and pushed the nose down to
get more speed, but the plane had already rolled beyond 45
degrees and now turned upside down and fell into an uncon-
trolled descent. The crew were confused by the situation. They
understood the plane was behaving erratically but were un-
aware they had overturned and were in a dive. They could no
longer discern thrust from engines 1– 3 and concluded those
engines had quit as well. The plane’s dive was evident from
their fl ight gauges, but the angle was so unlikely the crew de-
cided the gauges had failed. At 11,000 feet they broke through
the clouds, astonished to see that they were roaring toward
earth. The captain and fi rst offi cer both pulled back hard on
the stick, exerting enormous forces on the plane but manag-
ing to level off. Landing gear hung from the plane’s belly, and
they’d lost one of their hydraulic systems, but all four engines
came to life, and the captain was able to fl y on, diverting suc-
cessfully to San Francisco. An inspection revealed just how
severe their maneuver had been. Strains fi ve times the force of
gravity had bent the plane’s wings permanently upward, bro-
ken two landing gear struts, and torn away two landing gear
doors and large parts of the rear horizontal stabilizers.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 108
“Spatial disorientation” is the aeronautical term for a
deadly combination of two elements: losing sight of the hori-
zon and relying on human sensory perception that doesn’t
jibe with reality but is so convincing that pi lots conclude their
cockpit instruments have failed. As Kahneman says, System 1,
the instinctual, refl exive system that detects danger and keeps
us safe, can be very hard to overrule. Flight 006’s initial inci-
dent, the loss of an engine cruising at altitude, is not consid-
ered an emergency, but it quickly became one as a result of
the captain’s actions. Rather than following prescribed proce-
dure, and rather than fully engaging his System 2 analytic re-
sources by monitoring all his instruments, he let himself be-
come preoccupied with the engine restart and with a single
fl ight indicator, airspeed. Then, when things spiraled out of
control, he trusted his senses over his gauges, in effect trying
to construct his own narrative of what was happening to the
plane.
There’s a long list of illusions to which pi lots can fall prey
(some with mordant names like “the leans,” “graveyard spin,”
and “the black hole approach”) and sites on the Internet where
you can listen to the chilling last words of pi lots struggling
and failing to understand and correct what’s gone wrong in
the sky. Spatial disorientation was deemed the probable cause
of the crash that killed Mel Carnahan, the governor of Mis-
souri, while being fl own through a thunderstorm one night in
October 2000, and the probable cause of the crash that killed
John F. Kennedy Jr. and his wife and her sister off the shore of
Martha’s Vineyard on a hazy night in July 1999. Fortunately,
the China Airlines incident came to a good end, but the Na-
tional Transportation Safety Board report of that incident re-
veals just how quickly training and professionalism can be
hijacked by System 1 illusion, and therefore why we need to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 109
cultivate a disciplined System 2, conscious analysis and rea-
soning, that always keeps one eye on the fl ight instruments.3
Illusions and Memory Distortions
The fi lmmaker Errol Morris, in a series of articles on illusion
in the New York Times, quotes the social psychologist David
Dunning on humans’ penchant for “motivated reasoning,” or,
as Dunning put it, the “sheer genius people have at convinc-
ing themselves of congenial conclusions while denying the
truth of incon ve nient ones.”4 (The British prime minister Ben-
jamin Disraeli once said of a po liti cal opponent that his con-
science was not his guide but his accomplice.) There are many
ways that our System 1 and System 2 judgments can be led
astray: perceptual illusions like those experienced by pi lots,
faulty narrative, distortions of memory, failure to recognize
when a new kind of problem requires a new kind of solution,
and a variety of cognitive biases to which we’re prone. We
describe a number of these hazards here, and then we offer
mea sures you can take, akin to scanning the cockpit instru-
ments, to help keep your thinking aligned with reality.
Our understanding of the world is shaped by a hunger for
narrative that rises out of our discomfort with ambiguity and
arbitrary events. When surprising things happen, we search
for an explanation. The urge to resolve ambiguity can be sur-
prisingly potent, even when the subject is inconsequential. In
a study where participants thought they were being mea sured
for reading comprehension and their ability to solve anagrams,
they were exposed to the distraction of a background phone
conversation. Some heard only one side of a conversation,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 110
and others heard both sides. The participants, not knowing
that the distraction itself was the subject of the study, tried to
ignore what they were hearing so as to stay focused on the
reading and anagram solutions. The results showed that over-
hearing one side of a conversation proved more distracting
than overhearing both sides, and the content of those partial
conversations was better recalled later by the unintentional
eavesdroppers. Why was this? Presumably, those overhearing
half a conversation were strongly compelled to try to infer the
missing half in a way that made for a complete narrative. As
the authors point out, the study may help explain why we fi nd
one- sided cell phone conversations in public spaces so intru-
sive, but it also reveals the ineluctable way we are drawn to
imbue the events around us with rational explanations.
The discomfort with ambiguity and arbitrariness is equally
powerful, or more so, in our need for a rational understand-
ing of our own lives. We strive to fi t the events of our lives
into a cohesive story that accounts for our circumstances, the
things that befall us, and the choices we make. Each of us has
a different narrative that has many threads woven into it
from our shared culture and experience of being human, as
well as many distinct threads that explain the singular events
of one’s personal past. All these experiences infl uence what
comes to mind in a current situation and the narrative through
which you make sense of it: Why nobody in my family at-
tended college until me. Why my father never made a fortune
in business. Why I’d never want to work in a corporation, or,
maybe, Why I would never want to work for myself. We
gravitate to the narratives that best explain our emotions. In
this way, narrative and memory become one. The memories
we or ga nize meaningfully become those that are better re-
membered. Narrative provides not only meaning but also a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 111
mental framework for imbuing future experiences and infor-
mation with meaning, in effect shaping new memories to fi t our
established constructs of the world and ourselves. No reader,
when asked to account for the choices made under pressure by
a novel’s protagonist, can keep her own life experience from
shading her explanation of what must have been going on in
the character’s interior world. The success of a magician or
politician, like that of a novelist, relies on the seductive powers
of narrative and on the audience’s willing suspension of disbe-
lief. Nowhere is this more evident than in the national po liti cal
debate, where like- minded people gather online, at community
meetings, and in the media to fi nd common purpose and ex-
pand the story they feel best explains their sense of how the
world works and how humans and politicians should behave.
You can see how quickly personal narrative is invoked to
explain emotions when you read an article online whose au-
thor has argued a position on almost any subject— for exam-
ple, an op- ed piece supporting the use of testing as a powerful
tool for learning. Scan the comments posted by readers: some
sing hallelujah while others can scarcely contain their um-
brage, each invoking a personal story that supports or refutes
the column’s main argument. The psychologists Larry Jacoby,
Bob Bjork, and Colleen Kelley, summing up studies on illu-
sions of comprehension, competence, and remembering, write
that it is nearly impossible to avoid basing one’s judgments on
subjective experience. Humans do not give greater credence
to an objective record of a past event than to their subjective
remembering of it, and we are surprisingly insensitive to the
ways our par tic u lar construals of a situation are unique to
ourselves. Thus the narrative of memory becomes central to
our intuitions regarding the judgments we make and the ac-
tions we take.5
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 112
It is a confounding paradox, then, that the changeable na-
ture of our memory not only can skew our perceptions but
also is essential to our ability to learn. As will be familiar to
you by now, every time we call up a memory, we make the
mind’s routes to that memory stronger, and this capacity to
strengthen, expand, and modify memory is central to how we
deepen our learning and broaden the connections to what we
know and what we can do. Memory has some similarities to
a Google search algorithm, in the sense that the more you
connect what you learn to what you already know, and the
more associations you make to a memory (for example, link-
ing it with a visual image, a place, or a larger story), then the
more mental cues you have through which to fi nd and retrieve
the memory again later. This capacity expands our agency:
our ability to take action and be effective in the world. At the
same time, because memory is a shape- shifter, reconciling the
competing demands of emotion, suggestions, and narrative, it
serves you well to stay open to the fallibility of your certain-
ties: even your most cherished memories may not represent
events in the exact way they occurred.
Memory can be distorted in many ways. People interpret a
story in light of their world knowledge, imposing order where
none had been present so as to make a more logical story.
Memory is a reconstruction. We cannot remember every as-
pect of an event, so we remember those elements that have
greatest emotional signifi cance for us, and we fi ll in the gaps
with details of our own that are consistent with our narrative
but may be wrong.
People remember things that were implied but not specifi –
cally stated. The literature is full of examples. In one, many
people who read a paragraph about a troubled girl named
Helen Keller later mistakenly recalled the phrase “deaf, dumb,
and blind” as being in the text. This mistake was rarely made
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 113
by another group who read the same paragraph about a girl
named Carol Harris.6
Imagination infl ation refers to the tendency of people who,
when asked to imagine an event vividly, will sometimes begin
to believe, when asked about it later, that the event actually
occurred. Adults who were asked “Did you ever break a win-
dow with your hand?” were more likely on a later life inven-
tory to report that they believed this event occurred during
their lifetimes. It seems that asking the question led them to
imagine the event, and the act of having imagined it had the
effect, later, of making them more likely to think it had oc-
curred (relative to another group who answered the question
without having previously imagined it occurring).
Hypothetical events that are imagined vividly can seat them-
selves in the mind as fi rmly as memories of actual events. For
instance, when it is suspected that a child is being sexually
abused and he is interviewed and questioned about it, he may
imagine experiences that the interviewer describes and then
later come to “remember” them as having occurred.7 (Sadly,
of course, many memories of childhood sexual abuse are ab-
solutely true, usually ones reported soon after the occurrence.)
Another type of memory illusion is one caused by suggestion,
which may arise simply in the way a question is asked. In one
example, people watched a video of a car running a stop sign
at an intersection and colliding with another car passing
through. Those who were later asked to judge the speed of the
vehicles when they “contacted” each other gave an average
estimate of thirty- two miles per hour. Those who were asked
to judge the speed when the two vehicles “smashed” into each
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 114
other estimated on average forty- one miles per hour. If the
speed limit was thirty miles per hour, asking the question the
second way rather than the fi rst could lead to the driver’s be-
ing charged with speeding. Of course, the legal system knows
the danger of witnesses being asked “leading questions” (ones
that encourage a par tic u lar answer), but such questions are
diffi cult to avoid completely, because suggestibility can be
very subtle. After all, in the case just discussed, the two cars
did “smash together.”8
Some witnesses to crimes who are struggling to recall them
are instructed to let their minds roam freely, to generate what-
ever comes to mind, even if it is a guess. However, the act of
guessing about possible events causes people to provide their
own misinformation, which, if left uncorrected, they may
later come to retrieve as memories. That is one reason why
people who have been interviewed after being hypnotized are
barred from testifying in court in almost all states and Cana-
dian provinces. The hypnotic interview typically encourages
people to let their thoughts roam freely and produce every-
thing that comes to mind, in hopes that they will retrieve in-
formation that would not otherwise be produced. However,
this pro cess causes them to produce much erroneous informa-
tion, and studies have shown that when they are tested later,
under instructions only to tell exactly what they remember of
the actual events, their guesses made while under hypnosis
cloud their memories about what truly happened. In par tic u-
lar, they remember events they produced under hypnosis as
actual experiences, even under conditions (in the laboratory)
when it is known that the events in question did not occur.9
Interference from other events can distort memory. Suppose
the police interview a witness shortly after a crime, showing
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 115
pictures of possible suspects. Time passes, but eventually the
police nab a suspect, one whose picture had been viewed by
the witness. If the witness is now asked to view a lineup, he
may mistakenly remember one of the suspects whose photo
he saw as having been present at the crime. A particularly
vivid example of a related pro cess happened to the Australian
psychologist Donald M. Thomson. A woman in Sydney was
watching tele vi sion in midday when she heard a knock at the
door. When she answered it, she was attacked, raped, and left
unconscious. When she awoke and dialed the police, they came
to her aid, got a description of her assailant, and launched
a  search. They spotted Donald Thomson walking down a
Sydney street, and he matched the description. They arrested
him on the spot. It turns out that Thomson had an airtight
alibi— at the exact time of the rape, he was being interviewed
on a live tele vi sion show. The police did not believe him and
sneered when he was being interrogated. However, the story
was true. The woman had been watching the show when she
heard the knock on the door. The description she gave the
police was apparently of the man she saw on tele vi sion, Don-
ald Thomson, rather than the rapist. Her System 1 reaction—
quick but sometimes mistaken— provided the wrong descrip-
tion, probably due to her extreme emotional state.10
What psychologists call the curse of knowledge is our ten-
dency to underestimate how long it will take another person
to learn something new or perform a task that we have al-
ready mastered. Teachers often suffer this illusion— the calcu-
lus instructor who fi nds calculus so easy that she can no lon-
ger place herself in the shoes of the student who is just starting
out and struggling with the subject. The curse-of-knowledge
effect is close kin to hindsight bias, or what is often called the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 116
knew- it- all- along effect, in which we view events after the fact
as having been more predictable than they were before they
occurred. Stock market pundits will confi dently announce on
the eve ning news why the stock market behaved as it did that
day, even though they could not have predicted the move-
ments that morning.11
Accounts that sound familiar can create the feeling of know-
ing and be mistaken for true. This is one reason that po liti cal
or advertising claims that are not factual but are repeated can
gain traction with the public, particularly if they have emo-
tional resonance. Something you once heard that you hear
again later carries a warmth of familiarity that can be mis-
taken for memory, a shred of something you once knew and
cannot quite place but are inclined to believe. In the world of
propaganda, this is called “the big lie” technique— even a big
lie told repeatedly can come to be accepted as truth.
Fluency illusions result from our tendency to mistake fl uency
with a text for mastery of its content. For example, if you read
a particularly lucid pre sen ta tion of a diffi cult concept, you can
get the idea that it is actually pretty simple and perhaps even
that you knew it all along. As discussed earlier, students who
study by rereading their texts can mistake their fl uency with a
text, gained from rereading, for possession of accessible knowl-
edge of the subject and consequently overestimate how well
they will do on a test.
Our memories are also subject to social infl uence and tend to
align with the memories of the people around us. If you are in
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 117
a group reminiscing about past experiences and someone
adds a wrong detail about the story, you will tend to incorpo-
rate this detail into your own memory and later remember the
experience with the erroneous detail. This pro cess is called
“memory conformity” or the “social contagion of memory”:
one person’s error can “infect” another person’s memory. Of
course, social infl uences are not always bad. If someone recalls
details of joint memory on which you are somewhat hazy,
your subsequent memory will be updated and will hold a
more accurate record of the past event.12
In the obverse of the social infl uence effect, humans are pre-
disposed to assume that others share their beliefs, a pro cess
called the false consensus effect. We generally fail to recognize
the idiosyncratic nature of our personal understanding of the
world and interpretation of events and that ours differ from
others’. Recall how surprised you were recently, on commiser-
ating with a friend about the general state of affairs, to discover
that she sees in an entirely different light matters on which you
thought the correct view was fundamental and obvious: cli-
mate change, gun control, fracking of gas wells— or perhaps
something very local, such as whether to pass a bond issue for
a school building or to oppose construction of a big box store
in the neighborhood.13
Confi dence in a memory is not a reliable indication of its ac-
curacy. We can have utmost faith in a vivid, nearly literal
memory of an event and yet fi nd that we actually have it all
wrong. National tragedies, like the assassination of President
John Kennedy or the events surrounding 9/11, create what
psychologists call “fl ashbulb” memories, named for the vivid
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 118
images that we retain: where we were when we got the news,
how we learned it, how we felt, what we did. These memories
are thought to be indelible, burned into our minds, and it is
true that the broad outlines of such catastrophes, thoroughly
reported in the media, are well remembered, but your mem-
ory of your personal circumstances surrounding the events
may not necessarily be accurate. There have been numerous
studies of this phenomenon, including surveys of fi fteen hun-
dred Americans’ memories of the September 11 attacks. In
this study, the respondents’ memories were surveyed a week
after the attacks, again a year later, and then again three years
and ten years later. Respondents’ most emotional memories
of their personal details at the time they learned of the attacks
are also those of which they are most confi dent and, paradoxi-
cally, the ones that have most changed over the years relative
to other memories about 9/11.14
Mental Models
As we develop mastery in the various areas of our lives, we
tend to bundle together the incremental steps that are required
to solve different kinds of problems. To use an analogy from
a previous chapter, you could think of them as something
like smart- phone apps in the brain. We call them mental mod-
els. Two examples in police work are the choreography of the
routine traffi c stop and the moves to take a weapon from an
assailant at close quarters. Each of these maneuvers involves a
set of perceptions and actions that cops can adapt with little
conscious thought in response to context and situation. For a
barista, a mental model would be the steps and ingredients to
produce a perfect sixteen- ounce decaf frappuccino. For the
receptionist at urgent care, it’s triage and registration.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 119
The better you know something, the more diffi cult it be-
comes to teach it. So says physicist and educator Eric Mazur
of Harvard. Why? As you get more expert in complex areas,
your models in those areas grow more complex, and the com-
ponent steps that compose them fade into the background of
memory (the curse of knowledge). A physicist, for example,
will create a mental library of the principles of physics she can
use to solve the various kinds of problems she encounters in
her work: Newton’s laws of motion, for example, or the laws
of conservation of momentum. She will tend to sort problems
based on their underlying principles, whereas a novice will
group them by similarity of surface features, like the appara-
tus being manipulated in the problem (pulley, inclined plane,
etc.). One day, when she goes to teach an intro physics class,
she explains how a par tic u lar problem calls for something
from Newtonian mechanics, forgetting that her students have
yet to master the underlying steps she has long ago bundled
into one unifi ed mental model. This presumption by the pro-
fessor that her students will readily follow something com-
plex that appears fundamental in her own mind is a metacog-
nitive error, a misjudgment of the matchup between what
she knows and what her students know. Mazur says that the
person who knows best what a student is struggling with in
assimilating new concepts is not the professor, it’s another
student.15 This problem is illustrated through a very simple
experiment in which one person plays a common tune inside
her head and taps the rhythm with her knuckles and another
person hearing the rhythmic taps must guess the tune. Each
tune comes from a fi xed set of twenty- fi ve, so the statistical
chance of guessing it is 4 percent. Tellingly, the participants
who have the tune in mind estimate that the other person will
guess correctly 50 percent of the time, but in fact the listeners
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 120
guess correctly only 2.5 percent of the time, no better than
chance.16
Like Coach Dooley’s football players memorizing their play-
books, we all build mental libraries of myriad useful solutions
that we can call on at will to help us work our way from one
Saturday game to the next. But we can be tripped by these
models, too, when we fail to recognize a new problem that
appears to be a familiar one is actually something quite differ-
ent and we pull out a solution to address it that doesn’t work
or makes things worse. The failure to recognize when your
solution doesn’t fi t the problem is another form of faulty self-
observation that can lead you into trouble.
Mike Ebersold, the neurosurgeon, was called into the op-
erating room one day to help a surgical resident who, in the
midst of removing a brain tumor, was losing the patient. The
usual model for cutting out a tumor calls for taking your time,
working carefully around the growth, getting a clean margin,
saving the surrounding nerves. But when the growth is in the
brain, and if you get bleeding behind it, pressure on the brain
can turn fatal. Instead of slow- and- careful, you need just the
opposite, cutting the growth out very quickly so the blood
can drain, and then working to repair the bleeding. “Initially
you might be a little timid to take the big step,” Mike says. “It’s
not pretty, but the patient’s survival depends on your knowing
to switch gears and do it fast.” Mike assisted, and the surgery
was successful.
Like the infant who calls the stranger Dada, we must culti-
vate the ability to discern when our mental models aren’t
working: when a situation that seems familiar is actually dif-
ferent and requires that we reach for a different solution and
do something new.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 121
Unskilled and Unaware of It
Incompetent people lack the skills to improve because they are
unable to distinguish between incompetence and competence.
This phenomenon, of par tic u lar interest for metacognition,
has been named the Dunning- Kruger effect after the psycholo-
gists David Dunning and Justin Kruger. Their research showed
that incompetent people overestimate their own competence
and, failing to sense a mismatch between their per for mance
and what is desirable, see no need to try to improve. (The title of
their initial paper on the topic was “Unskilled and Unaware
of It.”) Dunning and Kruger have also shown that incompe-
tent people can be taught to raise their competence by learning
the skills to judge their own per for mance more accurately, in
short, to make their metacognition more accurate. In one se-
ries of studies that demonstrate this fi nding, they gave students
a test of logic and asked them to rate their own per for mance. In
the fi rst experiment the results confi rmed expectations that the
least competent students were the most out of touch with their
per for mance: students who scored at the twelfth percentile on
average believed that their general logical reasoning ability fell
at the sixty- eighth percentile.
In a second experiment, after taking an initial test and rat-
ing their own per for mance, the students were shown the other
students’ answers and then their own answers and asked to
reestimate the number of test questions they had answered
correctly. The students whose per for mance was in the bottom
quartile failed to judge their own per for mance more accu-
rately after seeing the more competent choices of their peers
and in fact tended to raise their already infl ated estimates of
their own ability.
A third experiment explored whether poor performers could
learn to improve their judgment. The students were given ten
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 122
problems in logical reasoning and after the test were asked to
rate their logical reasoning skills and test per for mance. Once
again, the students in the bottom quartile grossly overesti-
mated their per for mance. Next, half the students received
ten minutes of training in logic (how to test the accuracy of a
syllogism); the other half of the students were given an unre-
lated task. All the students were then asked to estimate again
how well they had performed on the test. Now the students in
the bottom quartile who had received the training were much
more accurate estimators of the number of questions they got
right and of how they performed compared to the other stu-
dents. Those in the bottom quartile who didn’t receive the
training held to their mistaken conviction that they had per-
formed well.
How is it that incompetent people fail to learn through
experience that they are unskilled? Dunning and Kruger offer
several theories. One is that people seldom receive negative
feedback about their skills and abilities from others in every-
day life, because people don’t like to deliver the bad news.
Even if people get negative feedback, they must come to an
accurate understanding of why the failure occurred. For suc-
cess everything must go right, but by contrast, failure can be
attributed to any number of external causes: it’s easy to blame
the tool for what the hand cannot do. Finally, Dunning and
Kruger suggest that some people are just not astute at reading
how other people are performing and are therefore less able
to spot competence when they see it, making them less able to
make comparative judgments of their own per for mance.
These effects are more likely to occur in some contexts and
with some skills than with others. In some domains, the reve-
lation of one’s incompetence can be brutally frank. The au-
thors can all remember from their childhoods when a teacher
would appoint two boys to pick other kids for softball teams.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 123
The good players are picked fi rst, the worst last. You learn
your peers’ judgments of your softball abilities in a very pub-
lic manner, so it would be hard for the last- picked player to
think “I must be really good at softball.” However, most
realms of life do not render such stark judgments of ability.17
To sum up, the means by which we navigate the world—
Daniel Kahneman’s Systems 1 and 2— rely on our perceptual
systems, intuition, memory, and cognition, with all their tics,
warts, biases, and fl aws. Each of us is an astounding bundle of
perceptual and cognitive abilities, coexisting with the seeds of
our own undoing. When it comes to learning, what we choose
to do is guided by our judgments of what works and what
doesn’t, and we are easily misled.
Our susceptibility to illusion and misjudgment should give
us all pause, and especially so to the advocates of “student-
directed learning,” a theory now current among some parents
and educators. This theory holds that students know best what
they need to study to master a subject, and what pace and
methods work best for them. For example, at Manhattan Free
School in East Harlem, opened in 2008, students “do not re-
ceive grades, take tests or have to do anything they do not feel
like doing.” The Brooklyn Free School, which opened in 2004,
along with a new crop of homeschooling families who call
themselves “unschoolers,” follows the precept that what ever
intrigues the learner is what will result in the best learning. 18
The intent is laudatory. We know that students need to take
more control of their own learning by employing strategies
like those we have discussed. For example, they need to test
themselves, both to attain the direct benefi ts of increased re-
tention and to determine what they know and don’t know to
more accurately judge their progress and focus on material
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 124
that needs more work. But few students practice these strate-
gies, and those who do will need more than encouragement if
they are to practice them effectively: It turns out that even
when students understand that retrieval practice is a superior
strategy, they often fail to persist long enough to get the last-
ing benefi t. For example, when students are presented with a
body of material to master, say a stack of foreign vocabulary
fl ashcards, and are free to decide when to drop a card out of
the deck because they’ve learned it, most students drop the
card when they’ve gotten it right once or twice, far sooner
than they should. The paradox is that those students who
employ the least effective study strategies overestimate their
learning the most and, as a consequence of their misplaced
confi dence, they are not inclined to change their habits.
The football player preparing for next Saturday’s game
doesn’t leave his per for mance to intuition, he runs through his
plays and mixes it up to discover the rough edges and work
them out on the fi eld well before suiting up for the big game.
If this kind of behavior were anywhere close to the norm for
students in their academics today, then self- directed learning
would be highly effective. But of course the football player is
not self- directed, his practice is guided by a coach. Likewise,
most students will learn academics better under an instructor
who knows where improvement is needed and structures the
practice required to achieve it.19
The answer to illusion and misjudgment is to replace sub-
jective experience as the basis for decisions with a set of ob-
jective gauges outside ourselves, so that our judgment squares
with the real world around us. When we have reliable refer-
ence points, like cockpit instruments, and make a habit of
checking them, we can make good decisions about where to
focus our efforts, recognize when we’ve lost our bearings, and
fi nd our way back again. Here are some examples.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 125
Tools and Habits for Calibrating
Your Judgment
Most important is to make frequent use of testing and re-
trieval practice to verify what you really do know versus what
you think you know. Frequent low- stakes quizzes in class help
the instructor verify that students are in fact learning as well
as they appear to be and reveal the areas where extra atten-
tion is needed. Doing cumulative quizzing, as Andy Sobel
does in his po liti cal economics course, is especially powerful
for consolidating learning and knitting the concepts from one
stage of a course into new material encountered later. As a
learner, you can use any number of practice techniques to self-
test your mastery, from answering fl ashcards to explaining
key concepts in your own words, and to peer instruction (see
below).
Don’t make the mistake of dropping material from your
testing regime once you’ve gotten it correct a couple of times.
If it’s important, it needs to be practiced, and practiced again.
And don’t put stock in momentary gains that result from
massed practice. Space your testing, vary your practice, keep
the long view.
Peer instruction, a learning model developed by Eric Mazur,
incorporates many of the foregoing principles. The material
to be covered in class is assigned for reading beforehand. In
class, the lecture is interspersed with quick tests that present
students with a conceptual question and give them a minute
or two to grapple with it; they then try, in small groups, to
reach a consensus on the correct answer. In Mazur’s experi-
ence, this pro cess engages the students in the underlying con-
cepts of the lecture material; reveals students’ problems in
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 126
reaching understanding; and provides opportunities for them
to explain their understanding, receive feedback, and assess
their learning compared to other students. Likewise, the pro-
cess serves as a gauge for the instructor of how well the stu-
dents are assimilating the material and in what areas more or
less work is needed. Mazur tries to pair students who initially
had different answers to a question so that they can see an-
other point of view and try to convince one another of who is
right.
For two more examples of this technique, see the pro-
fi les of the professors Mary Pat Wenderoth and Michael
D. Matthews in Chapter 8.20
Pay attention to the cues you’re using to judge what you have
learned. Whether something feels familiar or fl uent is not al-
ways a reliable indicator of learning. Neither is your level of
ease in retrieving a fact or a phrase on a quiz shortly after
encountering it in a lecture or text. (Ease of retrieval after a
delay, however, is a good indicator of learning.) Far better is
to create a mental model of the material that integrates the
various ideas across a text, connects them to what you al-
ready know, and enables you to draw inferences. How ably
you can explain a text is an excellent cue for judging compre-
hension, because you must recall the salient points from
memory, put them into your own words, and explain why
they are signifi cant— how they relate to the larger subject.
Instructors should give corrective feedback, and learners
should seek it. In his interview with Errol Morris, the psy-
chologist David Dunning argues that the path to self- insight
leads through other people. “So it really depends on what sort
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 127
of feedback you are getting. Is the world telling you good
things? Is the world rewarding you in a way that you would
expect a competent person to be rewarded? If you watch
other people, you often fi nd there are different ways to do
things; there are better ways to do things. ‘I’m not as good as
I thought I was, but I have something to work on.’ ” Think of
the kids lining up to join the softball team— would you be
picked?21
In many fi elds, the practice of peer review serves as an ex-
ternal gauge, providing feedback on one’s per for mance. Most
medical practice groups have morbidity/mortality confer-
ences, and if a doctor has a bad patient outcome, it will be
presented there. The other doctors will pick it apart, or say
“You did a good job, it was just a bad situation.” Mike Eber-
sold argues that people in his fi eld should practice as a part of
a group. “If there are other neurosurgeons around you, it’s a
safeguard. If you’re doing something that’s not acceptable,
they’ll call you to task for it.”
In many settings, your judgment and learning are calibrated
by working alongside a more experienced partner: airline fi rst
offi cers with captains, rookies with seasoned cops, residents
with experienced surgeons. The apprentice model is a very old
one in human experience, as novices (whether cobblers or at-
torneys) have traditionally learned their craft from experi-
enced practitioners.
In other settings, teams are formed of people with comple-
mentary areas of expertise. When doctors implant medical
devices like pacemakers and neural stimulators of the type
that treat incontinence or the symptoms of Parkinson’s dis-
ease, the manufacturer has a product representative right in
the operating room with the surgeon. The rep has seen many
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 128
surgeries using the device, knows the kinds of patients that
will benefi t from it, knows the contraindications and adverse
events, and has a hotline to the engineers and clinicians on the
company’s staff. The rep tracks the surgery to make sure the
device is implanted in the correct position, the leads are in-
serted to the correct depth, and so on. Every part of the team
benefi ts. The patient is assured of an appropriate and success-
ful surgery. The doctor gets product and troubleshooting ex-
pertise at her fi ngertips. And the company makes sure its
products are used correctly.
Training that simulates the kinds of demands and changeable
conditions that can be expected in real- world settings helps
learners and trainers assess mastery and focus on areas where
understanding or competency need to be raised. Take police
work, where many different forms of simulation are used in
training. For fi rearms training it’s often video- based scenarios,
with a large screen set up at one end of a room where a num-
ber of props have been placed to imitate the situation con-
fronting the offi cer, who enters the scene armed with a gun
that has been modifi ed to interact with the video.
Lieutenant Catherine Johnson of the Minneapolis Police
Department describes a couple of such simulations in which
she has trained:
One was a traffi c stop. The training room had the screen at
one end and objects around the room— a big blue mailbox, a
fi re hydrant, a doorway— that you could use for cover in deal-
ing with what was happening on the screen. I remember walk-
ing toward the screen, and the video simulating my coming up
to the car as I did that, very realistic, and suddenly the trunk
popped up and a guy with a shotgun rose out and shot me.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Avoid Illusions of Knowing ê 129
Which, to this day, every time I go up to a car on a traffi c stop,
I push down hard on the trunk to make sure it isn’t open. And
it’s because of that one scenario in the training that I went
through.
Another fi rearm simulation was a domestic call, and it starts
where I am approaching the residence and there’s a guy on his
porch. The instant I show up I see that he has a gun in his
hand. I order him to drop it, and the fi rst thing he does is turn
and start walking away. And my thinking at that point is that I
can’t shoot this guy in the back, and there’s nobody over there
that looks to be in danger, so what am I going to do? In the
time it takes me to pro cess whether or not I should shoot this
guy, he’s already turned around and shot me. Because my re-
action was slower than his action. Action beats reaction every
time. That’s one mantra that’s drilled into our minds.22
The fi rearms simulations can play out in a variety of ways
both deadly and peaceful. There’s not so much a right or
wrong answer to the situation as there is a complex set of fac-
tors, some of which, like whether the individual on the porch
has a criminal history, may be known to the offi cer when she
enters the scene. At the conclusion, the offi cer debriefs with
her trainer, getting feedback. The exercise isn’t all about tech-
nique, it’s about clear thinking and appropriate refl exes—
visual and verbal clues to watch for, possible outcomes, being
clear about the appropriate use of deadly force, and fi nding
the words after the fact that will account for actions you have
taken in the urgency of the moment.
Simulation is not perfect. Johnson recounts how offi cers
are trained to take a gun from an assailant at close quarters, a
maneuver they practice by role- playing with a fellow offi cer.
It requires speed and deftness: striking an assailant’s wrist with
one hand to break his grip while simultaneously wresting the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 130
gun free with the other. It’s a move that offi cers had been in the
habit of honing through repetition, taking the gun, handing it
back, taking it again. Until one of their offi cers, on a call in
the fi eld, took the gun from an assailant and handed it right
back again. In their mutual astonishment, the offi cer managed
to reseize the gun and hang onto it. The training regime had
violated the cardinal rule that you should practice like you
play, because you will play like you practice.
Sometimes the most powerful feedback for calibrating your
sense of what you do and don’t know are the mistakes you
make in the fi eld, assuming you survive them and are recep-
tive to the lesson.23
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

131
All learners are different, and all ris-
ing to a great place, as Francis Bacon tells us, is by a winding
stair.1
Consider the story of Bruce Hendry, born in 1942, raised
on the banks of the Mississippi north of Minneapolis by a
machinist and a homemaker, just another American kid with
skinned knees and fi re in the belly to get rich. When we talk
about self- made men, the story often sounds familiar. This is
not that story. Bruce Hendry is self- made, but the story is in
the winding stair, how he found his way, and what it helps us
understand about differences in how people learn.
The idea that individuals have distinct learning styles has
been around long enough to become part of the folklore of
educational practice and an integral part of how many people
perceive themselves. The underlying premise says that people
receive and pro cess new information differently: for example,
6
Get Beyond Learning Styles
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 132
some learn better from visual materials, and others learn better
from written text or auditory materials. Moreover, the theory
holds that people who receive instruction in a manner that is
not matched to their learning style are at a disadvantage for
learning.
In this chapter, we acknowledge that everyone has learning
preferences, but we are not persuaded that you learn better
when the manner of instruction fi ts those preferences. Yet there
are other kinds of differences in how people learn that do
matter. First, the story of Bruce, to help frame our argument.
Active Learning from the Get- Go
Part of the secret to Bruce is his sense, from the earliest age, of
being the one in charge of Bruce. When he was two his mother,
Doris, told him he couldn’t cross the street because a car might
hit him. Every day, Bruce crossed the street, and every day Do-
ris gave him a spanking. “He was born aggressive,” Doris told
friends.
At eight he bought a ball of string at a garage sale for a
dime, cut it up, and sold the pieces for a nickel each. At ten he
got a paper route. At eleven he added caddying. At twelve he
stuffed his pocket with $30 in savings, sneaked out of his bed-
room window before dawn with an empty suitcase, and hitch-
hiked 255 miles to Aberdeen, South Dakota. He stocked up
on Black Cats, cherry bombs, and roman candles, illegal in
Minnesota, and hitched home before supper. Over the next
week, Doris couldn’t fi gure out why all the paperboys were
dropping by the house for a few minutes and leaving. Bruce
had struck gold, but the paper route supervisor found out and
tipped off Bruce Se nior. The father told the son if he ever did
it again he’d get the licking of his life. Bruce repeated the buy-
ing trip the following summer and got the promised licking.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 133
“It was worth it,” he says.2 He was thirteen, and he had
learned a lesson about high demand and short supply.
The way Bruce fi gured, rich people were probably no
smarter than he was, they just had knowledge he lacked.
Looking at how he went after the knowledge he sought will
illustrate some of the learning differences that matter. One,
of course, is taking charge of your own education, a habit
with Bruce from age two that he has exhibited through the
years with remarkable per sis tence. There are other signal
behaviors. As he throws himself into one scheme after an-
other, he draws lessons that improve his focus and judgment.
He knits what he learns into mental models of investing, which
he then uses to size up more complex opportunities and fi nd
his way through the weeds, plucking the telling details from
masses of irrelevant information to reach the payoff at the
end. These behaviors are what psychologists call “rule learn-
ing” and “structure building.” People who as a matter of habit
extract underlying principles or rules from new experiences
are more successful learners than those who take their experi-
ences at face value, failing to infer lessons that can be applied
later in similar situations. Likewise, people who single out
salient concepts from the less important information they
encounter in new material and who link these key ideas into a
mental structure are more successful learners than those who
cannot separate wheat from chaff and understand how the
wheat is made into fl our.
When he was barely a teenager, Bruce saw a fl yer advertising
wooded lots on a lake in central Minnesota. Advised that no
one ever lost money on real estate, he bought one. Over four
subsequent summers, with occasional help from his dad, he
built a house on it, confronting each step in the pro cess one at
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 134
a time, fi guring it out for himself or fi nding someone to show
him how. To dig the basement, he borrowed a trailer and
hooked it up to his ’49 Hudson. He paid 50 cents for every
load his friends excavated, shovel by shovel, and then charged
the own er of a nearby lot that needed fi ll a dollar for it. He
learned how to lay block from a friend whose father was in
the cement business and then laid himself a foundation. He
learned how to frame the walls from the salesman at the lum-
ber yard. He plumbed the house and wired it the same way, a
wide- eyed kid asking around how you do that sort of thing.
“The electrical inspector disapproved it,” Bruce recalls. “At
the time, I fi gured it was because they wanted a union guy to
do it, so I popped for a union guy to come up from the Cities
and redo all my wiring. Looking back, I’m sure what I had
done was totally dangerous.”
He was nineteen and a university student the summer he
traded the house for the down payment on a fourplex in Min-
neapolis. It was a simple premise: four apartments would gen-
erate four checks in the mail, month in and month out. Soon,
besides his studies at university, he was managing the rental
property, paying on the mortgage, answering midnight calls
over broken plumbing, raising rents and losing tenants, trying
to fi ll vacant units, and pouring in more money. He had learned
how to parlay a vacant lot into a house, and a house into an
apartment complex, but in the end the lesson proved a sour
one, yielding more headache than reward. He sold the four-
plex and swore off real estate for the next two de cades.
Out of college, Bruce went to work for Kodak as a micro-
fi lm salesman. In his third year, he was one of fi ve top sales-
men in the country. That was the year he found out how
much his branch manager was making: less than Bruce made
as a salesman, if he factored in his company car and expense
account. It pays better to be a rainmaker than a manager:
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 135
another lesson learned, another step up Bruce’s winding stair.
He quit to join a brokerage fi rm and sell stocks.
From this new vantage point, more lessons: “If I brought a
dollar into the fi rm in trading commissions, half went to the
fi rm and half of the remaining half went to the IRS. To make
real money, I had to focus more on investing my own money
and less on making sales commissions.” Oops, another lesson:
investing in stocks is risky. He lost as much investing his own
money as he earned in commissions selling investments to
his clients. “You have no control of the down side. If a stock
drops 50 percent, it has to go up by 100 percent just to break
even. A hundred percent is a lot harder to make than fi fty is to
lose!” More knowledge banked. He bided his time, casting his
eyes about for the insight he was after.
Enter Sam Leppla.
As Bruce tells it, Leppla was just a guy who roamed the
Minneapolis skyways in those days, from one investment fi rm
to another, talking deals and giving advice. One day he told
Bruce about some bonds in a distressed company that were
selling for 22 cents on the dollar. “There were twenty- two
points of unpaid back interest on these bonds,” Bruce recalls,
“so when the company came out of bankruptcy, you’d collect
the back interest— in other words, 100 percent of your invest-
ment cost— and you’d still own a paying bond.” It amounted
to free money. “I didn’t buy any,” Bruce says. “But I watched
it, and it worked out exactly like Sam predicted. So, I called
him up and said, ‘Can you come down and tell me what you’re
doing?’ ”
Leppla taught Bruce a more complex understanding of the
relationships between price, supply, demand, and value than
he’d learned from a suitcase full of fi reworks. Leppla’s modus
operandi was drawn from the following precept. When a com-
pany runs into trouble, the fi rst claim on its assets belongs not
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 136
to its own ers, the shareholders, but to its creditors: the suppli-
ers and bondholders. There’s a pecking order to bonds. Those
bonds paid fi rst are called se nior bonds. Any residual assets
after the se nior bonds are paid go to pay off the ju nior bonds.
Ju nior bonds in a troubled company get cheap if investors
fear there won’t be enough assets left over to cover their value,
but investors’ fear, laziness, and ignorance can depress bond
prices far below the worth of the underlying assets. If you can
ascertain that actual worth and you know the price of the
bonds, you can invest with very little risk.
Here was the kind of knowledge Bruce had been seeking.
Florida real estate investment trusts were distressed at the
time, so Sam and Bruce started looking into those, buying
where they could see that the fi re- sale prices signifi cantly dis-
counted the underlying values. “We’d buy these for 5 dollars
and sell them for 50. Everything we bought made money.”
They had a good run, but market prices caught up with values,
and soon they were in need of another idea.
At the time, eastern railroads were going bankrupt, and the
federal government was buying their assets to form Conrail
and Amtrak. As Bruce tells it, “One day Sam said, ‘Railroads
go bankrupt every fi fty years and no one knows anything about
them. They are real complicated and they take years to work
out.’ So we found a guy who knew about railroads. Barney
Donahue. Barney was an ex– IRS agent and a railroad buff. If
you’ve ever met a real railroad buff, they think it, they breathe
it, they can tell you the weight of the track and they can tell
you the numbers on the engines. He was one of those guys.”
A central tenet of their investment model was to discover
more than other investors knew about residual assets and the
order in which the bonds were to be honored. Armed with the
right knowledge, they could cherry- pick the underpriced ju-
nior bonds most likely to be paid off. Donahue checked out
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 137
the different railroads and decided that the best one to invest
in was the Erie Lackawanna, because it had the most modern
equipment when it fi led for bankruptcy. Hendry, Leppla, and
Donahue dived in for a closer look. They traveled the entire
length of the Erie’s track to check its condition. They counted
the equipment that remained, looked at its condition, and
checked in Moody’s transportation manuals to calculate val-
ues. “You just do the arithmetic: What’s an engine worth?
A boxcar? A mile of track?” The Erie had issued fi fteen differ-
ent bonds over its 150 years in operation, and the value of each
bond was dependent in part on where it stood in se niority
compared to the others. Bruce’s research turned up a little
document in which the fi nancial institutions had agreed to the
sequence in which bonds were to be paid off when the assets
were liquidated. With a fi x on the value of the company’s as-
sets, liabilities, and the bond structure, they knew what each
class of bonds was worth. Bondholders who hadn’t done this
homework were in the dark. Ju nior bonds were selling at
steeply discounted prices because they were so far down the
food chain that investors doubted they would ever see their
money. Bruce’s calculations suggested otherwise, and he was
buying.
It’s a longer story than we have space to tell. A railroad
bankruptcy is an astonishingly convoluted affair. Bruce com-
mitted himself to understanding the entirety of the pro cess
better than anybody else. Then he knocked on doors, chal-
lenged the good- old- boys’ power structure that was manag-
ing the proceedings, and eventually succeeded in getting ap-
pointed by the courts to chair the committee that represented
the bondholders’ interests in the bankruptcy pro cess. When
the Erie came out of bankruptcy two years later, he was made
chairman and CEO of the company. He hired Barney Dona-
hue to run it. Hendry, Donahue, and the board guided the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 138
surviving corporation through the remaining lawsuits, and
when the dust settled, Bruce’s bonds paid twice face value,
twenty times what he paid for some of the ju nior bonds he
had purchased.
The Erie Lackawanna, with all its complexity and David
versus Goliath qualities, was just the kind of mess that be-
came Bruce Hendry’s bread and butter: fi nding a company in
trouble, burrowing into its assets and liabilities, reading the
fi ne print on credit obligations, looking at its industry and
where things are headed, understanding the litigation pro cess,
and wading into it armed with a pretty good idea of how
things were going to play out.
There are stories of other remarkable conquests. He took
control of Kaiser Steel, staved off its liquidation, guided it
out of bankruptcy as CEO, and was awarded 2 percent own-
ership of the new corporation. He interceded in the failure of
First RepublicBank of Texas and came out the other side with
a 600 percent return on some of his fi rst investments in the
company. When manufacturers stopped making railroad box-
cars because they were in oversupply, Bruce bought a thou-
sand of the last ones built, collected 20 percent on his invest-
ment from lease contracts that the railroads were bound to
honor, and then sold the cars a year later when they were in
short supply and fetching a handsome price. The story of Hen-
dry’s rise is both familiar and par tic u lar; familiar in the na-
ture of the quest and par tic u lar in the ways Bruce has “gone
to school” on his ventures, building his own set of rules for
what makes an investment opportunity attractive, stitching the
rules into a template, and then fi nding new and different ways
to apply it.
When he is asked how he accounts for his success, the les-
sons he cites are deceptively simple: go where the competition
isn’t, dig deep, ask the right questions, see the big picture, take
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 139
risks, be honest. But these explanations aren’t very satisfying.
Behind them is a more interesting story, the one we infer from
reading between the lines: how he fi gured out what knowl-
edge he needed and how he then went after it; how early set-
backs helped seed the skills of shrewder judgment; and how
he developed a nose for value where others can only smell
trouble. His gift for detecting value seems uncanny. His sto-
ries bring to mind the kid who, waking up on his fourth birth-
day to fi nd a big pile of manure in the yard, dances around it
crying, “I’m pretty sure there’s a pony in there somewhere!”
All people are different, a truism we quickly discern as
children, comparing ourselves to siblings. It’s evident in grade
school, on the sports fi eld, in the boardroom. Even if we shared
Bruce Hendry’s desire and determination, even if we took his
pointers to heart, how many of us would learn the art of know-
ing which pile had a pony in it? As the story of Bruce makes
clear, some learning differences matter more than others. But
which differences? That’s what we’ll explore in the rest of this
chapter.
One difference that appears to matter a lot is how you see
yourself and your abilities.
As the maxim goes, “Whether you think you can or you
think you can’t, you’re right.” The work of Carol Dweck, de-
scribed in Chapter 7, goes a long way toward validating this
sentiment. So does a Fortune article of a few years ago that tells
of a seeming contradiction, the stories of people with dyslexia
who have become high achievers in business and other fi elds
despite their learning disabilities. Richard Branson, of Virgin
Rec ords and Virgin Atlantic Airways, quit school at sixteen to
start and run businesses now worth billions; Diane Swonk is
one of the top economic forecasters in the United States; Craig
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 140
McCaw is a pioneer of the cellular phone industry; Paul Orfa-
lea founded Kinko’s. These achievers and others, when asked,
told their stories of overcoming adversity. All had trouble in
school and with the accepted methods of learning, most were
mislabeled low IQ, some were held back or shunted into
classes for the mentally retarded, and nearly all were sup-
ported by parents, tutors, and mentors who believed in them.
Branson recalled, “At some point, I think I decided that being
dyslexic was better than being stupid.” There, in a phrase,
Branson’s personal narrative of exceptionalism.3
The stories we create to understand ourselves become the
narratives of our lives, explaining the accidents and choices
that have brought us where we are: what I’m good at, what I
care about most, and where I’m headed. If you’re among the
last kids standing on the sidelines as the softball teams are
chosen up, the way you understand your place in the world
likely changes a little, shaping your sense of ability and the
subsequent paths you take.
What you tell yourself about your ability plays a part in
shaping the ways you learn and perform– how hard you apply
yourself, for example, or your tolerance for risk- taking and
your willingness to persevere in the face of diffi culty. But dif-
ferences in skills, and your ability to convert new knowledge
into building blocks for further learning, also shape your routes
to success. Your fi nesse at softball, for example, depends on a
constellation of different skills, like your ability to hit the ball,
run the bases, and fi eld and throw the ball. Moreover, skill on
the playing fi eld is not a prerequisite for becoming a star in
the sport in a different capacity. Many of the best managers
and coaches in pro sports were mediocre or poor players but
happen to be exceptional students of their games. Although
Tony LaRussa’s career as a baseball player was short and un-
distinguished, he went on to manage ball teams with remark-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 141
able success. When he retired, having chalked up six Ameri-
can and National League championships and three World
Series titles, he was hailed as one of the greatest managers of
all time.
Each of us has a large basket of resources in the form of
aptitudes, prior knowledge, intelligence, interests, and sense
of personal empowerment that shape how we learn and how
we overcome our shortcomings. Some of these differences
matter a lot— for example, our ability to abstract underlying
principles from new experiences and to convert new knowl-
edge into mental structures. Other differences we may think
count for a lot, for example having a verbal or visual learning
style, actually don’t.
On any list of differences that matter most for learning, the
level of language fl uency and reading ability will be at or near
the top. While some kinds of diffi culties that require increased
cognitive effort can strengthen learning, not all diffi culties we
face have that effect. If the additional effort required to over-
come the defi cit does not contribute to more robust learning,
it’s not desirable. An example is the poor reader who cannot
hold onto the thread of a text while deciphering individual
words in a sentence. This is the case with dyslexia, and while
dyslexia is not the only cause of reading diffi culties, it is one
of the most common, estimated to affect some 15 percent of
the population. It results from anomalous neural develop-
ment during pregnancy that interferes with the ability to read
by disrupting the brain’s capacity to link letters to the sounds
they make, which is essential for word recognition. People
don’t get over dyslexia, but with help they can learn to work
with and around the problems it poses. The most successful
programs emphasize practice at manipulating phonemes,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 142
building vocabulary, increasing comprehension, and improv-
ing fl uency of reading. Neurologists and psychologists empha-
size the importance of diagnosing dyslexia early and working
with children before the third grade while the brain is still
quite plastic and potentially more malleable, enabling the re-
routing of neural circuits.
Dyslexia is far more common among prison inmates than
the general population, as a result of a series of bad turns that
often begin when children who can’t read fall into a pattern
of failure in school and develop low self- esteem. Some of
them turn to bullying or other forms of antisocial behavior to
compensate, and this strategy, if left unaddressed, can escalate
into criminality.
While it is diffi cult for learners with dyslexia to gain essen-
tial reading skills and this disadvantage can create a constel-
lation of other learning diffi culties, the high achievers inter-
viewed for the Fortune article argue that some people with
dyslexia seem to possess, or to develop, a greater capacity for
creativity and problem solving, whether as a result of their
neural wiring or the necessity they face to fi nd ways to com-
pensate for their disability. To succeed, many of those inter-
viewed reported that they had to learn at an early age how to
grasp the big picture rather than struggling to decipher the
component parts, how to think outside the box, how to act
strategically, and how to manage risk taking— skills of neces-
sity that, once learned, gave them a decided leg up later in
their careers. Some of these skills may indeed have a neuro-
logical basis. Experiments by Gadi Geiger and Jerome Lettvin
at Massachusetts Institute of Technology have found that in-
dividuals with dyslexia do poorly at interpreting information
in their visual fi eld of focus when compared to those without
dyslexia. However, they signifi cantly outperform others in their
ability to interpret information from their peripheral vision,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 143
suggesting that a superior ability to grasp the big picture
might have its origins in the brain’s synaptic wiring.4
There’s an enormous body of literature on dyslexia, which
we won’t delve into here beyond acknowledging that some
neurological differences can count for a lot in how we learn,
and for some subset of these individuals, a combination of
high motivation, focused and sustained personal support, and
compensating skills or “intelligences” have enabled them to
thrive.
Belief in the learning styles credo is pervasive. Assessing stu-
dents’ learning styles has been recommended at all levels of
education, and teachers are urged to offer classroom material
in many different ways so that each student can take it in the
way he or she is best equipped to learn it. Learning styles
theory has taken root in management development, as well as
in vocational and professional settings, including the training
of military pi lots, health care workers, municipal police, and
beyond. A report on a 2004 survey conducted for Britain’s
Learning and Skills Research Centre compares more than sev-
enty distinct learning styles theories currently being offered in
the marketplace, each with its companion assessment instru-
ments to diagnose a person’s par tic u lar style. The report’s au-
thors characterize the purveyors of these instruments as an
industry bedev iled by vested interests that tout “a bedlam of
contradictory claims” and express concerns about the temp-
tation to classify, label, and ste reo type individuals. The au-
thors relate an incident at a conference where a student who
had completed an assessment instrument reported back: “I
learned that I was a low auditory, kinesthetic learner. So
there’s no point in me reading a book or listening to anyone
for more than a few minutes.”5 The wrongheadedness of this
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 144
conclusion is manifold. It’s not supported by science, and it
instills a corrosive, misguided sense of diminished potential.
Notwithstanding the sheer number and variety of learning
styles models, if you narrow the fi eld to those that are most
widely accepted you still fail to fi nd a consistent theoretical
pattern. An approach called VARK, advocated by Neil Flem-
ing, differentiates people according to whether they prefer to
learn through experiences that are primarily visual, auditory,
reading, or kinesthetic (i.e., moving, touching, and active ex-
ploration). According to Fleming, VARK describes only one
aspect of a person’s learning style, which in its entirety consists
of eigh teen different dimensions, including preferences in tem-
perature, light, food intake, biorhythms, and working with
others versus working alone.
Other learning styles theories and materials are based on
rather different dimensions. One commonly used inventory,
based on the work of Kenneth Dunn and Rita Dunn, assesses
six different aspects of an individual’s learning style: environ-
mental, emotional, so cio log i cal, perceptual, physiological, and
psychological. Still other models assess styles along such di-
mensions as these:
• Concrete versus abstract styles of perceiving
• Active experimentation versus refl ective observation
modes of pro cessing
• Random versus sequential styles of or ga niz ing
The Honey and Mumford Learning Styles Questionnaire,
which is pop u lar in managerial settings, helps employees deter-
mine whether their styles are predominantly “activist,” “refl ec-
tor,” “theorist,” or “pragmatist” and to improve in the areas
where they score low so as to become more versatile learners.
The simple fact that different theories embrace such wildly
discrepant dimensions gives cause for concern about their
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 145
scientifi c underpinnings. While it’s true that most all of us
have a decided preference for how we like to learn new mate-
rial, the premise behind learning styles is that we learn better
when the mode of pre sen ta tion matches the par tic u lar style in
which an individual is best able to learn. That is the critical
claim.
In 2008 the cognitive psychologists Harold Pashler, Mark
McDaniel, Doug Rohrer, and Bob Bjork were commissioned
to conduct a review to determine whether this critical claim is
supported by scientifi c evidence. The team set out to answer
two questions. First, what forms of evidence are needed for
institutions to justify basing their instructional styles on assess-
ments of students’ or employees’ learning styles? For the results
to be credible, the team determined that a study would need
to have several attributes. Initially, students must be divided
into groups according to their learning styles. Then they must
be randomly assigned to different classrooms teaching the
same material but offering it through different instructional
methods. Afterward, all the students must take the same test.
The test must show that students with a par tic u lar learning
style (e.g., visual learners) did the best when they received in-
struction in their own learning style (visual) relative to instruc-
tion in a different style (auditory); in addition, the other types
of learners must be shown to profi t more from their style of
instruction than another style (auditory learners learning bet-
ter from auditory than from visual pre sen ta tion).
The second question the team asked was whether this kind
of evidence existed. The answer was no. They found very few
studies designed to be capable of testing the validity of learn-
ing styles theory in education, and of those, they found that
virtually none validate it and several fl atly contradict it. More-
over, their review showed that it is more important that the
mode of instruction match the nature of the subject being
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 146
taught: visual instruction for geometry and geography, verbal
instruction for poetry, and so on. When instructional style
matches the nature of the content, all learners learn better,
regardless of their differing preferences for how the material
is taught.
The fact that the evidence is not there to validate learning
styles theory doesn’t mean that all theories are wrong. Learning
styles theories take many forms. Some may be valid. But if so,
we can’t know which: because the number of rigorous studies
is extremely small, the research base does not exist to answer
the question. On the basis of their fi ndings, Pashler and his col-
leagues argued that the evidence currently available does not
justify the huge investment of time and money that would be
needed to assess students and restructure instruction around
learning styles. Until such evidence is produced, it makes more
sense to emphasize the instructional techniques, like those out-
lined in this book, that have been validated by research as ben-
efi ting learners regardless of their style preferences.6
Successful Intelligence
Intelligence is a learning difference that we do know matters,
but what exactly is it? Every human society has a concept that
corresponds to the idea of intelligence in our culture. The
problem of how to defi ne and mea sure intelligence in a way
that accounts for people’s intellectual horse power and pro-
vides a fair indicator of their potential has been with us for
over a hundred years, with psychologists trying to mea sure
this construct since early in the twentieth century. Psycholo-
gists today generally accept that individuals possess at least
two kinds of intelligence. Fluid intelligence is the ability to
reason, see relationships, think abstractly, and hold informa-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 147
tion in mind while working on a problem; crystallized intel-
ligence is one’s accumulated knowledge of the world and the
procedures or mental models one has developed from past
learning and experience. Together, these two kinds of intelli-
gence enable us to learn, reason, and solve problems.7
Traditionally, IQ tests have been used to mea sure individ-
uals’ logical and verbal potential. These tests assign an Intel-
ligence Quotient, which denotes the ratio of mental age to
physical age, times 100. That is, an eight- year- old who can
solve problems on a test that most ten- year- olds can solve has
an IQ of 125 (10 divided by 8, times 100). It used to be thought
that IQ was fi xed from birth, but traditional notions of intel-
lectual capacity are being challenged.
One countervailing idea, put forward by the psychologist
Howard Gardner to account for the broad variety in people’s
abilities, is the hypothesis that humans have as many as eight
different kinds of intelligence:
Logical- mathematical intelligence: ability to think critically,
work with numbers and abstractions, and the like;
Spatial intelligence: three- dimensional judgment and the
ability to visualize with the mind’s eye;
Linguistic intelligence: ability to work with words and
languages;
Kinesthetic intelligence: physical dexterity and control of
one’s body;
Musical intelligence: sensitivity to sounds, rhythms, tones,
and music;
Interpersonal intelligence: ability to “read” other people and
work with them effectively;
Intrapersonal intelligence: ability to understand one’s self
and make accurate judgments of one’s knowledge, abilities, and
effectiveness;
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 148
Naturalistic intelligence: the ability to discriminate and re-
late to one’s natural surroundings (for example, the kinds of
intelligence invoked by a gardener, hunter, or chef).
Gardner’s ideas are attractive for many reasons, not the
least because they attempt to explain human differences that
we can observe but cannot account for with modern, Western
defi nitions of intelligence with their focus on language and
logic abilities. As with learning styles theory, the multiple in-
telligences model has helped educators to diversify the kinds
of learning experiences they offer. Unlike learning styles, which
can have the perverse effect of causing individuals to perceive
their learning abilities as limited, multiple intelligences theory
elevates the sheer variety of tools in our native toolkit. What
both theories lack is an underpinning of empirical validation,
a problem Gardner himself recognizes, acknowledging that
determining one’s par tic u lar mix of intelligences is more an
art than a science.8
While Gardner helpfully expands our notion of intelligence,
the psychologist Robert J. Sternberg helpfully distills it again.
Rather than eight intelligences, Sternberg’s model proposes
three: analytical, creative, and practical. Further, unlike Gard-
ner’s theory, Sternberg’s is supported by empirical research.9
One of Sternberg’s studies of par tic u lar interest to the ques-
tion of how we mea sure intelligence was carried out in rural
Kenya, where he and his associates looked at children’s in-
formal knowledge of herbal medicines. Regular use of these
medicines is an important part of Kenyans’ daily lives. This
knowledge is not taught in schools or assessed by tests, but
children who can identify the herbs and who know their ap-
propriate uses and dosages are better adapted to succeed in
their environment than children without that knowledge. The
children who performed best on tests of this indigenous infor-
mal knowledge did worst relative to their peers on tests of the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 149
formal academic subjects taught in school and, in Sternberg’s
words, appeared to be “stupid” by the metric of the formal
tests. How to reconcile the discrepancy? Sternberg suggests
that the children who excelled at indigenous knowledge came
from families who valued such practical knowledge more
highly than the families of the children who excelled at the
academics taught in school. Children whose environments
prized one kind of learning over another (practical over aca-
demic, in the case of the families who taught their children
about herbs) were at a lower level of knowledge in the aca-
demic areas not emphasized by their environment. Other fami-
lies placed more value on the analytic (school- based) informa-
tion and less on the practical herbal knowledge.
There are two important ideas here. First, traditional mea-
sures of intelligence failed to account for environmental dif-
ferences; there is no reason to suspect that kids who excelled
at informal, indigenous knowledge can’t catch up to or even
surpass their peers in academic learning when given the ap-
propriate opportunities. Second, for the kids whose environ-
ments emphasized indigenous knowledge, the mastery of aca-
demics is still developing. In Sternberg’s view, we’re all in a
state of developing expertise, and any test that mea sures
only what we know at any given moment is a static mea sure
that tells us nothing about our potential in the realm the test
mea sures.
Two other quick stories Sternberg cites are useful here.
One is a series of studies of orphaned children in Brazil who
must learn to start and run street businesses if they are to sur-
vive. Motivation is high; if they turn to theft as a means to
sustain themselves, they risk running afoul of the death squads.
These children, who are doing the math required in order to
run successful businesses, cannot do the same math when
the problems are presented in an abstract, paper- and- pencil
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 150
format. Sternberg argues that this result makes sense when
viewed from the standpoint of developing expertise: the chil-
dren live in an environment that emphasizes practical skills,
not academic, and it’s the practical exigencies that determine
the substance and form of the learning.10
The other story is about seasoned, expert handicappers at
horse tracks who devise highly complex mental models for
betting on horses but who mea sure only average on standard
IQ tests. Their handicapping models were tested against those
devised by less expert handicappers with equivalent IQs.
Handicapping requires comparing horses against a long list of
variables for each horse, such as its lifetime earnings, its life-
time speed, the races where it came in the money, the ability
of its jockey in the current race, and a dozen characteristics of
each of its prior races. Just to predict the speed with which a
horse would run the fi nal quarter mile, the experts relied on
a complex mental model involving as many as seven vari-
ables. The study found that IQ is unrelated to handicapping
ability, and “what ever it is that an IQ test mea sures, it is not
the ability to engage in cognitively complex forms of multi-
variate reasoning.”11
Into this void Robert Sternberg has introduced his three-
part theory of successful intelligence. Analytical intelligence is
our ability to complete problem- solving tasks such as those
typically contained in tests; creative intelligence is our ability to
synthesize and apply existing knowledge and skills to deal with
new and unusual situations; practical intelligence is our ability
to adapt to everyday life— to understand what needs to be done
in a specifi c setting and then do it; what we call street smarts.
Different cultures and learning situations draw on these intel-
ligences differently, and much of what’s required to succeed in
a par tic u lar situation is not mea sured by standard IQ or apti-
tude tests, which can miss critical competencies.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 151
Dynamic Testing
Robert Sternberg and Elena Grigorenko have proposed the
idea of using testing to assess ability in a dynamic manner.
Sternberg’s concept of developing expertise holds that with
continued experience in a fi eld we are always moving from a
lower state of competence to a higher one. His concept also
holds that standardized tests can’t accurately rate our poten-
tial because what they reveal is limited to a static report of
where we are on the learning continuum at the time the test is
given. In tandem with Sternberg’s three- part model of intelli-
gence, he and Grigorenko have proposed a shift away from
static tests and replacing them with what they call dynamic
testing: determining the state of one’s expertise; refocusing
learning on areas of low per for mance; follow- up testing to
mea sure the improvement and to refocus learning so as to
keep raising expertise. Thus, a test may assess a weakness, but
rather than assuming that the weakness indicates a fi xed in-
ability, you interpret it as a lack of skill or knowledge that can
be remedied. Dynamic testing has two advantages over stan-
dard testing. It focuses the learner and teacher on areas that
need to be brought up rather than on areas of accomplish-
ment, and the ability to mea sure a learner’s progress from one
test to the next provides a truer gauge of his or her learning
potential.
Dynamic testing does not assume one must adapt to some
kind of fi xed learning limitation but offers an assessment of
where one’s knowledge or per for mance stands on some dimen-
sion and how one needs to move forward to succeed: what do
I need to learn in order to improve? That is, where aptitude
tests and much of learning styles theory tend to emphasize
our strengths and encourage us to focus on them, dynamic
testing helps us to discover our weaknesses and correct them.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 152
In the school of life experience, setbacks show us where we
need to do better. We can steer clear of similar challenges in
the future, or we can redouble our efforts to master them,
broadening our capacities and expertise. Bruce Hendry’s ex-
periences investing in rental property and in the stock market
dealt him setbacks, and the lessons he took away were essen-
tial elements of his education: to be skeptical when somebody’s
trying to sell him something, to fi gure out the right questions,
and to learn how to go dig out the answers. That’s developing
expertise.
Dynamic testing has three steps.
Step 1: a test of some kind— perhaps an experience or a
paper exam— shows me where I come up short in knowl-
edge or a skill.
Step 2: I dedicate myself to becoming more competent, us-
ing refl ection, practice, spacing, and the other techniques
of effective learning.
Step 3: I test myself again, paying attention to what works
better now but also, and especially, to where I still need
more work.
When we take our fi rst steps as toddlers, we are engaging
in dynamic testing. When you write your fi rst short story, put
it in front of your writers’ group for feedback, and then revise
and bring it back, you’re engaging in dynamic testing, learn-
ing the writer’s craft and getting a sense of your potential. The
upper limits of your per for mance in any cognitive or manual
skill may be set by factors beyond your control, such as your
intelligence and the natural limits of your ability, but most of
us can learn to perform nearer to our full potential in most
areas by discovering our weaknesses and working to bring
them up.12
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 153
Structure Building
There do appear to be cognitive differences in how we learn,
though not the ones recommended by advocates of learning
styles. One of these differences is the idea mentioned earlier
that psychologists call structure building: the act, as we en-
counter new material, of extracting the salient ideas and con-
structing a coherent mental framework out of them. These
frameworks are sometimes called mental models or mental
maps. High structure- builders learn new material better than
low structure- builders. The latter have diffi culty setting aside
irrelevant or competing information, and as a result they tend
to hang on to too many concepts to be condensed into a work-
able model (or overall structure) that can serve as a founda-
tion for further learning.
The theory of structure building bears some resemblance to
a village built of Lego blocks. Suppose you’re taking a survey
course in a new subject. You start with a textbook full of ideas,
and you set out to build a coherent mental model of the knowl-
edge they contain. In our Lego analogy, you start with a box
full of Lego pieces, and you set out to build the town that’s
pictured on the box cover. You dump out the pieces and sort
them into a handful of piles. First you lay out the streets and
sidewalks that defi ne the perimeter of the city and the distinct
places within it. Then you sort the remaining pieces according
to the elements they compose: apartment complex, school, hos-
pital, stadium, mall, fi re station. Each of these elements is like a
central idea in the textbook, and each takes more shape and
nuance as added pieces snap into place. Together, these central
ideas form the larger structure of the village.
Now suppose that your brother has used this Lego set be-
fore and dumped some pieces into the box from another set.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 154
As you fi nd pieces, some might not fi t with your building
blocks, and you can put them aside as extraneous. Or you
may discover that some of the new pieces can be used to form
a substructure of an existing building block, giving it more
depth and defi nition (porches, patios, and back decks as sub-
structures of apartments; streetlights, hydrants, and boule-
vard trees as substructures of streets). You happily add these
pieces to your village, even though the original designers of
the set had not planned on this sort of thing. High structure-
builders develop the skill to identify foundational concepts
and their key building blocks and to sort new information
based on whether it adds to the larger structure and one’s
knowledge or is extraneous and can be put aside. By contrast,
low structure- builders struggle in fi guring out and sticking
with an overarching structure and knowing what information
needs to fi t into it and what ought to be discarded. Structure
building is a form of conscious and subconscious discipline:
stuff fi ts or it doesn’t; it adds nuance, capacity and meaning,
or it obscures and overfreights.
A simpler analogy might be a friend who wants to tell you
a rare story about this four- year- old boy she knows: she men-
tions who the mother is, how they became friends in their
book club, fi nally mentioning that the mother, by coincidence,
had a large load of manure delivered for her garden on the
morning of the boy’s birthday— the mother’s an incredible
gardener, her eggplants took a ribbon at the county fair and
got her an interview on morning radio, and she gets her ma-
nure from that widowed guy in your church who raises the
Clydesdale horses and whose son is married to— and so on
and so on. Your friend cannot winnow the main ideas from
the blizzard of irrelevant associations, and the story is lost on
the listener. Story, too, is structure.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 155
Our understanding of structure building as a cognitive dif-
ference in learning is still in the early stages: is low structure-
building the result of a faulty cognitive mechanism, or is
structure- building a skill that some pick up naturally and
others must be taught? We know that when questions are
embedded in texts to help focus readers on the main ideas, the
learning per for mance of low structure- builders improves to a
level commensurate with high structure- builders. The embed-
ded questions promote a more coherent repre sen ta tion of the
text than low- structure readers can build on their own, thus
bringing them up toward the level achieved by the high
structure- builders.
What’s happening in this situation remains an open ques-
tion for now, but the implication for learners seems to rein-
force a notion offered earlier by the neurosurgeon Mike Eber-
sold and the pediatric neurologist Doug Larsen: that cultivating
the habit of refl ecting on one’s experiences, of making them
into a story, strengthens learning. The theory of structure
building may provide a clue as to why: that refl ecting on what
went right, what went wrong, and how might I do it differ-
ently next time helps me isolate key ideas, or ga nize them into
mental models, and apply them again in the future with an
eye to improving and building on what I’ve learned.13
Rule versus Example Learning
Another cognitive difference that appears to matter is whether
you are a “rule learner” or “example learner,” and the dis-
tinction is somewhat akin to the one we just discussed. When
studying different kinds of problems in a chemistry class, or
specimens in a course on birds and how to identify them, rule
learners tend to abstract the underlying principles or “rules”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 156
that differentiate the examples being studied. Later, when they
encounter a new chemistry problem or bird specimen, they
apply the rules as a means to classify it and select the appro-
priate solution or specimen box. Example learners tend to
memorize the examples rather than the underlying principles.
When they encounter an unfamiliar case, they lack a grasp of
the rules needed to classify or solve it, so they generalize from
the nearest example they can remember, even if it is not par-
ticularly relevant to the new case. However, example learners
may improve at extracting underlying rules when they are
asked to compare two different examples rather than focus
on studying one example at a time. Likewise, they are more
likely to discover the common solution to disparate problems
if they fi rst have to compare the problems and try to fi gure
out the underlying similarities.
By way of an illustration, consider two different hypo-
thetical problems faced by a learner. These are taken from
research into rule learning. In one problem, a general’s forces
are set to attack a castle that is protected by a moat. Spies
have learned that the bridges over the moat have been mined
by the castle’s commander. The mines are set to allow small
groups to cross the bridges, so that the occupants of the cas-
tle can retrieve food and fuel. How can the general get a large
force over the bridges to attack the castle without tripping
the mines?
The other problem involves an inoperable tumor, which
can be destroyed by focused radiation. However, the radiation
must also pass through healthy tissue. A beam of suffi cient
intensity to destroy the tumor will damage the healthy tissue
through which it passes. How can the tumor be destroyed
without damaging healthy tissue?
In the studies, students have diffi culty fi nding the solution
to either of these problems unless they are instructed to look
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 157
for similarities between them. When seeking similarities, many
students notice that (1) both problems require a large force to
be directed at a target, (2) the full force cannot be massed and
delivered through a single route without an adverse outcome,
and (3) smaller forces can be delivered to the target, but a
small force is insuffi cient to solve the problem. By identifying
these similarities, students often arrive at a strategy of divid-
ing the larger force into smaller forces and sending these in
through different routes to converge on the target and destroy
it without setting off mines or damaging healthy tissue. Here’s
the payoff: after fi guring out this common, underlying solution,
students are then able to go on to solve a variety of different
convergence problems.14
As with high and low structure-builders, our understand-
ing of rule versus example learners is very preliminary. How-
ever, we know that high structure-builders and rule learners
are more successful in transferring their learning to unfamiliar
situations than are low structure-builders and example learn-
ers. You might wonder if the tendency to be a high structure-
builder is correlated with the tendency to be a rule learner.
Unfortunately, research is not yet available to answer this
question.
You can see the development of structure- building and
rule- learning skills in a child’s ability to tell a joke. A three-
year- old probably cannot deliver a knock- knock joke, because
he lacks an understanding of structure. You reply “Who’s
there?” and he jumps to the punch line: “Door is locked, I can’t
get in!” He doesn’t understand the importance, after “Who’s
there?”, of replying “Doris” to set up the joke. But by the
time he’s fi ve, he has become a knock- knock virtuoso: he has
memorized the structure. Nonetheless, at fi ve he’s not yet
adept at other kinds of jokes because he hasn’t yet learned
the essential element that makes jokes work, which, of course,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 158
is the “rule” that a punch line of any kind needs a setup,
explicit or implied.15
If you consider Bruce Hendry’s early lesson in the high value
of a suitcase full of scarce fi reworks, you can see how, when
he looks at boxcars many years later, he’s working with the
same supply- and- demand building block, but within a much
more complex model that employs other blocks of knowledge
that he has constructed over the years to address concepts of
credit risk, business cycles, and the pro cesses of bankruptcy.
Why are boxcars in surplus? Because tax incentives to inves-
tors had encouraged too much money to fl ow into their pro-
duction. What’s a boxcar worth? They cost $42,000 each to
build and were in like- new condition, as they had been some
of the last ones built. He researched the lifespan of a boxcar
and its scrap value and looked at the lease contracts. Even if
all his cars stood idle, the lease payments would pay a pretty
yield on his investment while the glut worked through the
system and the market turned around.
Had we been there, we would have bought boxcars, too.
Or so we’d like to think. But it’s not like fi lling a satchel with
fi reworks, even if the underlying principle of supply and de-
mand is the same. You had to buy the boxcars right, and under-
stand the way to go about it. What in lay terms we call know-
how. Knowledge is not knowhow until you understand the
underlying principles at work and can fi t them together into a
structure larger than the sum of its parts. Knowhow is learn-
ing that enables you to go do.
The Takeaway
Given what we know about learning differences, what’s the
takeaway?
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 159
Be the one in charge. There’s an old truism from sales school
that says you can’t shoot a deer from the lodge. The same
goes for learning: you have to suit up, get out the door, and
fi nd what you’re after. Mastery, especially of complex ideas,
skills, and pro cesses, is a quest. It is not a grade on a test,
something bestowed by a coach, or a quality that simply seeps
into your being with old age and gray hair.
Embrace the notion of successful intelligence. Go wide: don’t
roost in a pigeonhole of your preferred learning style but take
command of your resources and tap all of your “intelligences”
to master the knowledge or skill you want to possess. De-
scribe what you want to know, do, or accomplish. Then list
the competencies required, what you need to learn, and where
you can fi nd the knowledge or skill. Then go get it.
Consider your expertise to be in a state of continuing de-
velopment, practice dynamic testing as a learning strategy to
discover your weaknesses, and focus on improving yourself
in those areas. It’s smart to build on your strengths, but you
will become ever more competent and versatile if you also use
testing and trial and error to continue to improve in the areas
where your knowledge or per for mance are not pulling their
weight.
Adopt active learning strategies like retrieval practice, spac-
ing, and interleaving. Be aggressive. Like those with dyslexia
who have become high achievers, develop workarounds
or  compensating skills for impediments or holes in your
aptitudes.
Don’t rely on what feels best: like a good pi lot checking his
instruments, use quizzing, peer review, and the other tools
described in Chapter 5 to make sure your judgment of what
you know and can do is accurate, and that your strategies are
moving you toward your goals.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 160
Don’t assume that you’re doing something wrong if the
learning feels hard. Remember that diffi culties you can over-
come with greater cognitive effort will more than repay you
in the depth and durability of your learning.
Distill the underlying principles; build the structure. If you’re
an example learner, study examples two at a time or more,
rather than one by one, asking yourself in what ways they
are alike and different. Are the differences such that they re-
quire different solutions, or are the similarities such that they
respond to a common solution?
Break your idea or desired competency down into its com-
ponent parts. If you think you are a low structure-builder or
an example learner trying to learn new material, pause peri-
odically and ask what the central ideas are, what the rules are.
Describe each idea and recall the related points. Which are
the big ideas, and which are supporting concepts or nuances?
If you were to test yourself on the main ideas, how would you
describe them?
What kind of scaffold or framework can you imagine that
holds these central ideas together? If we borrowed the wind-
ing stair meta phor as a structure for Bruce Hendry’s invest-
ment model, it might work something like this. Spiral stairs
have three parts: a center post, treads, and risers. Let’s say the
center post is the thing that connects us from where we are
(down here) to where we want to be (up there): it’s the invest-
ment opportunity. Each tread is an element of the deal that
protects us from losing money and dropping back, and each
riser is an element that lifts us up a notch. Treads and risers
must both be present for the stairs to function and for a deal
to be attractive. Knowing the scrap value of boxcars is a
tread— Bruce knows he won’t get less than that for his invest-
ment. Another tread is the guaranteed lease income while his
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Get Beyond Learning Styles ê 161
capital is tied up. What are some risers? Impending scarcity,
which will raise values. The like- new condition of the cars, which
is latent value. A deal that doesn’t have treads and risers will
not protect the downside or reliably deliver the upside.
Structure is all around us and available to us through the
poet’s medium of meta phor. A tree, with its roots, trunk, and
branches. A river. A village, encompassing streets and blocks,
houses and stores and offi ces. The structure of the village ex-
plains how these elements are interconnected so that the village
has a life and a signifi cance that would not exist if these ele-
ments were scattered randomly across an empty landscape.
By abstracting the underlying rules and piecing them into a
structure, you go for more than knowledge. You go for know-
how. And that kind of mastery will put you ahead.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

162
In a famous study from the 1970s, a re-
searcher showed nursery school children one at a time into a
room with no distractions except for a marshmallow resting
on a tray on a desk. As the researcher left the room, the child
was told he could eat the marshmallow now, or, if he waited
for fifteen minutes, he would be rewarded with a second
marshmallow.
Walter Mischel and his graduate students observed through
a mirror as the children faced their dilemma. Some popped the
marshmallow into their mouths the moment the researcher
left, but others were able to wait. To help themselves hold
back, these kids tried anything they could think of. They
“covered their eyes with their hands, rested their heads on
their arms,  .  .  . talked to themselves, sang, invented games
with their hands and feet, and even tried to fall asleep,” to
avert their eyes and divert themselves from the reward.
7
Increase Your Abilities
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 163
Of more than six hundred children who took part in the
experiment, only one- third succeeded in resisting temptation
long enough to get the second marshmallow.
A series of follow- up studies, the most recent in 2011,
found that the nursery school children who had been more
successful in delaying gratifi cation in this exercise grew up to
be more successful in school and in their careers.
The marshmallow study is sublime in its simplicity and as
a meta phor for life. We are born with the gift of our genes,
but to a surprising degree our success is also determined by
focus and self- discipline, which are the offspring of motiva-
tion and one’s sense of personal empowerment.1
Consider James Paterson, a spirited, thirty- something Welsh-
man, and his unwitting seduction by the power of mnemonic
devices and the world of memory competitions. The word
“mnemonic” is from the Greek word for memory. Mnemonic
devices are mental tools that can take many forms but gener-
ally are used to help hold a large volume of new material in
memory, cued for ready recall.
James fi rst learned of mnemonics when one of his univer-
sity instructors fl eetingly mentioned their utility during a
lecture. He went straight home, searched the web, bought a
book. If he could learn these techniques, he fi gured, he could
memorize his classwork in short order and have a lot more
time to hang out with friends. He started practicing memoriz-
ing things: names and dates for his psychology classes and the
textbook page numbers where they were cited. He also prac-
ticed parlor tricks, like memorizing the sequence of playing
cards in a shuffl ed deck or strings of random numbers read
from lists made up by friends. He spent long hours honing his
techniques, becoming adept and the life of the party among
his social set. The year was 2006, and when he learned of a
memory competition to be held in Cambridge, En gland, he
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 164
decided on a lark to enter it. There he surprised himself by
taking fi rst place in the beginner category, a per for mance for
which he pocketed a cool 1,000 euros. He was hooked. Figur-
ing he had nothing to lose by taking a fl yer, he went on to com-
pete in his fi rst World Memory Championships, in London,
that same year.
With mnemonics James had fi gured to pocket some easy
facts to ace his exams without spending the time and effort to
fully master the material, but he discovered something en-
tirely different, as we will recount shortly.
Memory athletes, as these competitors call themselves, all
get their start in different ways. Nelson Dellis, the 2012 US
Memory Champion, began after his grandmother died of Alz-
heimer’s disease. Nelson watched her decline over time, with
her ability to remember being the fi rst cognitive faculty to go.
Although only in his twenties, Nelson wondered if he were
destined for the same fate and what he could do about it. He
discovered mind sports, hoping that if he could develop his
memory to great capacity, then he might have reserves if the
disease did strike him later in life. Nelson is another memory
athlete on his way up, and he has started a Foundation, Climb
for Memory, to raise awareness about and funds for research
for this terrible disease. Nelson also climbs mountains (twice
reaching near the summit of Mt. Everest), hence the name. We
meet others in this chapter who, like Paterson and Dellis, have
sought successfully to raise their cognitive abilities in one way
or another.
The brain is remarkably plastic, to use the term applied in
neuroscience, even into old age for most people. In this chap-
ter’s discussion of raising intellectual abilities, we review some
of the questions science is trying to answer about the brain’s
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 165
ability to change itself throughout life and people’s ability to
infl uence those changes and to raise their IQs. We then de-
scribe three known cognitive strategies for getting more out
of the mental horse power you’ve already got.
In a sense the infant brain is like the infant nation. When
John Fremont arrived with his expeditionary force at Pueblo
de Los Angeles in 1846 in the US campaign to take western
territory from Mexico, he had no way to report his progress
to President James Polk in Washington except to send his
scout, Kit Carson, across the continent on his mule— a round-
trip of nearly six thousand miles over mountains, deserts, wil-
derness and prairies. Fremont pressed Carson to whip himself
into a lather, not even to stop to shoot game along the way
but to sustain himself by eating the mules as they broke down
and needed replacing. That such a journey would be required
reveals the undeveloped state of the country. The fi ve- foot-
four- inch, 140- pound Carson was the best we had for getting
word from one coast to the other. Despite the continent’s
boundless natural assets, the fl edgling nation had little in the
way of capability. To become mighty, it would need cities, uni-
versities, factories, farms and seaports, and the roads, trains,
and telegraph lines to connect them.2
It’s the same with a brain. We come into the world endowed
with the raw material of our genes, but we become capable
through the learning and development of mental models and
neural pathways that enable us to reason, solve, and create.
We have been raised to think that the brain is hardwired and
our intellectual potential is more or less set from birth. We
now know otherwise. Average IQs have risen over the past
century with changes in living conditions. When people suffer
brain damage from strokes or accidents, scientists have seen
the brain somehow reassign duties so that adjacent networks
of neurons take over the work of damaged areas, enabling
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 166
people to regain lost capacities. Competitions between
“memory athletes” like James Paterson and Nelson Dellis have
emerged as an international sport among people who have
trained themselves to perform astonishing acts of recall. Ex-
pert per for mance in medicine, science, music, chess, or sports
has been shown to be the product not just of innate gifts, as
had long been thought, but of skills laid down layer by layer,
through thousands of hours of dedicated practice. In short,
research and the modern record have shown that we and our
brains are capable of much greater feats than scientists would
have thought possible even a few de cades ago.
Neuroplasticity
All knowledge and memory are physiological phenomena,
held in our neurons and neural pathways. The idea that the
brain is not hardwired but plastic, mutable, something that
reorganizes itself with each new task, is a recent revelation, and
we are just at the frontiers of understanding what it means and
how it works.
In a helpful review of the neuroscience, John T. Bruer took
on this question as it relates to the initial development and
stabilization of the brain’s circuitry and our ability to bolster
the intellectual ability of our children through early stimula-
tion. We’re born with about 100 billion nerve cells, called
neurons. A synapse is a connection between neurons, enabling
them to pass signals. For a period shortly before and after
birth, we undergo “an exuberant burst of synapse formation,”
in which the brain wires itself: the neurons sprout micro-
scopic branches, called axons, that reach out in search of tiny
nubs on other neurons, called dendrites. When axon meets
dendrite, a synapse is formed. In order for some axons to fi nd
their target dendrites they must travel vast distances to com-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 167
plete the connections that make up our neural circuitry (a
journey of such daunting scale and precision that Bruer likens
it to fi nding one’s way clear across the United States to a wait-
ing partner on the opposite coast, not unlike Kit Carson’s
mission to President Polk for General Fremont). It’s this cir-
cuitry that enables our senses, cognition, and motor skills, in-
cluding learning and memory, and it is this circuitry that forms
the possibilities and the limits of one’s intellectual capacity.
The number of synapses peaks at the age of one or two, at
about 50 percent higher than the average number we possess
as adults. A plateau period follows that lasts until around
puberty, whereupon this overabundance begins to decline as
the brain goes through a period of synaptic pruning. We arrive
at our adult complement at around age sixteen with a stagger-
ing number, thought to total about 150 trillion connections.
We don’t know why the infant brain produces an over-
abundance of connections or how it subsequently determines
which ones to prune. Some neuroscientists believe that the
connections we don’t use are the ones that fade and die away,
a notion that would seem to manifest the “use it or lose it”
principle and argue for the early stimulation of as many con-
nections as possible in hopes of retaining them for life. An-
other theory suggests the burgeoning and winnowing is deter-
mined by ge ne tics and we have little or no infl uence over which
synapses survive and which do not.
“While children’s brains acquire a tremendous amount of
information during the early years,” the neuroscientist Patri-
cia Goldman- Rakic told the Education Commission of the
States, most learning is acquired after synaptic formation sta-
bilizes. “From the time a child enters fi rst grade, through high
school, college, and beyond, there is little change in the num-
ber of synapses. It is during the time when no, or little, syn-
apse formation occurs that most learning takes place” and we
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 168
develop adult- level skills in language, mathematics, and logic.3
And it is likely during this period more than during infancy, in
the view of the neuroscientist Harry T. Chugani, that experience
and environmental stimulation fi ne- tune one’s circuits and
make one’s neuronal architecture unique.4 In a 2011 article, a
team of British academics in the fi elds of psychology and soci-
ology reviewed the evidence from neuroscience and concluded
that the architecture and gross structure of the brain appear to
be substantially determined by genes but that the fi ne structure
of neural networks appears to be shaped by experience and to
be capable of substantial modifi cation.5
That the brain is mutable has become evident on many fronts.
Norman Doidge, in his book The Brain That Changes Itself,
looks at compelling cases of patients who have overcome severe
impairments with the assistance of neurologists whose research
and practice are advancing the frontiers of our understanding
of neuroplasticity.
One of these was Paul Bach- y-Rita, who pioneered a device
to help patients who have suffered damage to sensory organs.
Bach- y-Rita’s device enables them to regain lost skills by
teaching the brain to respond to stimulation of other parts of
their bodies, substituting one sensory system for another,
much as a blind person can learn to navigate through echolo-
cation, learning to “see” her surroundings by interpreting the
differing sounds from the tap of a cane, or can learn to read
through the sense of touch using Braille.6
One of Bach- y-Rita’s patients had suffered damage to her
vestibular system (how the inner ear senses balance and spa-
tial orientation) that had left her so unbalanced that she was
unable to stand, walk, or maintain her in de pen dence. Bach-
y-Rita rigged a helmet with carpenters’ levels attached to it
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 169
and wired them to send impulses to a postage- stamp- sized
strip of tape containing 144 microelectrodes placed on the
woman’s tongue. As she tilted her head, the electrodes spar-
kled on her tongue like effervescence, but in distinctive pat-
terns refl ecting the direction and angle of her head movements.
Through practice wearing the device, the woman was gradu-
ally able to retrain her brain and vestibular system, recovering
her sense of balance for longer and longer periods following
the training sessions.
Another patient, a thirty- fi ve- year- old man who had lost his
sight at age thirteen, was outfi tted with a small video camera
mounted on a helmet and enabled to send pulses to the tongue.
As Bach- y-Rita explained, the eyes are not what sees, the brain
is. The eyes sense, and the brain interprets. The success of this
device relies on the brain learning to interpret signals from
the tongue as sight. The remarkable results were reported in
the New York Times: The patient “found doorways, caught
balls rolling toward him, and with his small daughter played
a game of rock, paper and scissors for the fi rst time in twenty
years. [He] said that, with practice, the substituted sense gets
better, ‘as if the brain were rewiring itself.’ ”7
In yet another application, interesting in light of our earlier
discussions of metacognition, stimulators are being attached
to the chests of pi lots to transmit cockpit instrument readings,
helping the brain to sense changes in pitch and altitude that
the pi lot’s vestibular system is unable to detect under certain
fl ight conditions.
Neural cell bodies make up most of the part of our brains that
scientists call the gray matter. What they call the white matter
is made up of the wiring: the axons that connect to dendrites of
other neural cell bodies, and the waxy myelin sheaths in which
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 170
some axons are wrapped, like the plastic coating on a lamp
cord. Both gray matter and white matter are the subject of
intense scientifi c study, as we try to understand how the com-
ponents that shape cognition and motor skills work and how
they change through our lives, research that has been greatly
advanced by recent leaps in brain imaging technology.
One ambitious effort is the Human Connectome Project,
funded by the National Institutes of Health, to map the con-
nections in the human brain. (The word “connectome” refers
to the architecture of the human neurocircuitry in the same
spirit that “genome” was coined for the map of the human
ge ne tic code.) The websites of participating research institu-
tions show striking images of the fi ber architecture of the
brain, masses of wire- like human axons presented in neon
colors to denote signal directions and bearing an uncanny re-
semblance to the massive wiring harnesses inside 1970s super-
computers. Early research fi ndings are intriguing. One study, at
the University of California, Los Angeles, compared the syn-
aptic architecture of identical twins, whose genes are alike,
and fraternal twins, who share only some genes. This study
showed what others have suggested, that the speed of our men-
tal abilities is determined by the robustness of our neural con-
nections; that this robustness, at the initial stages, is largely
determined by our genes, but that our neural circuitry does
not mature as early as our physical development and instead
continues to change and grow through our forties, fi fties, and
sixties. Part of the maturation of these connections is the
gradual thickening of the myelin coating of the axons. My-
elination generally starts at the backs of our brains and moves
toward the front, reaching the frontal lobes as we grow into
adulthood. The frontal lobes perform the executive functions
of the brain and are the location of the pro cesses of high- level
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 171
reasoning and judgment, skills that are developed through
experience.
The thickness of the myelin coating correlates with ability,
and research strongly suggests that increased practice builds
greater myelin along the related pathways, improving the
strength and speed of the electrical signals and, as a result,
per for mance. Increases in piano practice, for example, have
shown correlated increases in the myelination of nerve fi bers
associated with fi nger movements and the cognitive pro cesses
that are involved in making music, changes that do not ap-
pear in nonmusicians.8
The study of habit formation provides an interesting view
into neuroplasticity. The neural circuits we use when we take
conscious action toward a goal are not the same ones we use
when our actions have become automatic, the result of habit.
The actions we take by habit are directed from a region lo-
cated deeper in the brain, the basal ganglia. When we engage
in extended training and repetition of some kinds of learn-
ing, notably motor skills and sequential tasks, our learning
is thought to be recoded in this deeper region, the same area
that controls subconscious actions such as eye movements.
As a part of this pro cess of recoding, the brain is thought to
chunk motor and cognitive action sequences together so that
they can be performed as a single unit, that is, without requir-
ing a series of conscious decisions, which would substantially
slow our responses. These sequences become refl exive. That
is, they may start as actions we teach ourselves to take in pur-
suit of a goal, but they become automatic responses to stim-
uli. Some researchers have used the word “macro” (a simple
computer app) to describe how this chunking functions as a
form of highly effi cient, consolidated learning. These theories
about chunking as integral to the pro cess of habit formation
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 172
help explain the way in sports we develop the ability to re-
spond to the rapid- fi re unfolding of events faster than we’re
able to think them through, the way a musician’s fi nger move-
ments can outpace his conscious thoughts, or the way a chess
player can learn to foresee the countless possible moves and
implications presented by different confi gurations of the board.
Most of us display the same talent when we type.
Another fundamental sign of the brain’s enduring mutability
is the discovery that the hippocampus, where we consolidate
learning and memory, is able to generate new neurons through-
out life. This phenomenon, called neurogenesis, is thought to
play a central role in the brain’s ability to recover from physi-
cal injury and in humans’ lifelong ability to learn. The rela-
tionship of neurogenesis to learning and memory is a new fi eld
of inquiry, but already scientists have shown that the activity
of associative learning (that is, of learning and remembering
the relationship between unrelated items, such as names and
faces) stimulates an increase in the creation of new neurons in
the hippocampus. This rise in neurogenesis starts before the
new learning activity is undertaken, suggesting the brain’s in-
tention to learn, and continues for a period after the learn-
ing activity, suggesting that neurogenesis plays a role in the
consolidation of memory and the benefi cial effects that spaced
and effortful retrieval practice have on long- term retention.9
Of course, learning and memory are neural pro cesses. The
fact that retrieval practice, spacing, rehearsal, rule learning,
and the construction of mental models improve learning and
memory is evidence of neuroplasticity and is consistent with
scientists’ understanding of memory consolidation as an agent
for increasing and strengthening the neural pathways by which
one is later able to retrieve and apply learning. In the words
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 173
of Ann and Richard Barnet, human intellectual development
is “a lifelong dialogue between inherited tendencies and our
life history.”10 The nature of that dialogue is the central ques-
tion we explore in the rest of this chapter.
Is IQ Mutable?
IQ is a product of genes and environment. Compare it to
height: it’s mostly inherited, but over the de cades as nutrition
has improved, subsequent generations have grown taller.
Likewise, IQs in every industrialized part of the world have
shown a sustained rise since the start of standardized sam-
pling in 1932, a phenomenon called the Flynn effect after the
po liti cal scientist who fi rst brought it to wide attention.11 In
the United States, the average IQ has risen eigh teen points
in the last sixty years. For any given age group, an IQ of 100
is the mean score of those taking the IQ tests, so the increase
means that having an IQ of 100 today is the intelligence
equivalent of those with an IQ 60 years ago of 118. It’s the
mean that has risen, and there are several theories why this is
so, the principal one being that schools, culture (e.g., tele vi-
sion), and nutrition have changed substantially in ways that
affect people’s verbal and math abilities as mea sured by the
subtests that make up the IQ test.
Richard Nisbett, in his book Intelligence and How to Get
It, discusses the pervasiveness of stimuli in modern society
that didn’t exist years ago, offering as one simple example a
puzzle maze McDonald’s included in its Happy Meals a few
years ago that was more diffi cult than the mazes included in
an IQ test for gifted children.12 Nisbett also writes about “en-
vironmental multipliers,” suggesting that a tall kid who goes
out for basketball develops a profi ciency in the sport that a
shorter kid with the same aptitudes won’t develop, just as a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 174
curious kid who goes for learning gets smarter than the
equally bright but incurious kid who doesn’t. The options for
learning have expanded exponentially. It may be a very small
ge ne tic difference that makes one kid more curious than an-
other, but the effect is multiplied in an environment where
curiosity is easily piqued and readily satisfi ed.
Another environmental factor that shapes IQ is socioeco-
nomic status and the increased stimulation and nurturing that
are more generally available in families who have more re-
sources and education. On average, children from affl uent
families test higher for IQ than children from impoverished
families, and children from impoverished families who are
adopted into affl uent families score higher on IQ tests than
those who are not, regardless of whether the birth parents were
of high or low socioeconomic status.
The ability to raise IQ is fraught with controversy and the
subject of countless studies refl ecting wide disparities of scien-
tifi c rigor. A comprehensive review published in 2013 of the
extant research into raising intelligence in young children
sheds helpful light on the issue, in part because of the strict
criteria the authors established for determining which studies
would qualify for consideration. The eligible studies had to
draw from a general, nonclinical population; have a random-
ized, experimental design; consist of sustained interventions,
not of one- shot treatments or simply of manipulations during
the testing experience; and use a widely accepted, standard-
ized mea sure of intelligence. The authors focused on experi-
ments involving children from the prenatal period through age
fi ve, and the studies meeting their requirements involved over
37,000 participants.
What did they fi nd? Nutrition affects IQ. Providing dietary
supplements of fatty acids to pregnant women, breast- feeding
women, and infants had the effect of increasing IQ by any-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 175
where from 3.5 to 6.5 points. Certain fatty acids provide
building blocks for nerve cell development that the body can-
not produce by itself, and the theory behind the results is that
these supplements support the creation of new synapses. Stud-
ies of other supplements, such as iron and B complex vitamins,
strongly suggested benefi ts, but these need validation through
further research before they can be considered defi nitive.
In the realm of environmental effects, the authors found
that enrolling poor children in early education raises IQ by
more than four points, and by more than seven if the inter-
vention is based in a center instead of in the home, where
stimulation is less consistently sustained. (Early education was
defi ned as environmental enrichment and structured learning
prior to enrollment in preschool.) More affl uent children,
who are presumed to have many of these benefi ts at home,
might not show similar gains from enrolling in early educa-
tion programs. In addition, no evidence supports the widely
held notion that the younger children are when fi rst enrolled
in these programs the better the results. Rather, the evidence
suggests, as John Bruer argues, that the earliest few years of
life are not narrow windows for development that soon close.
Gains in IQ were found in several areas of cognitive train-
ing. When mothers in low- income homes were given the means
to provide their children with educational tools, books, and
puzzles and trained how to help their children learn to speak
and identify objects in the home, the children showed IQ
gains. When mothers of three- year- olds in low- income fami-
lies were trained to talk to their children frequently and at
length and to draw out the children with many open- ended
questions, the children’s IQs rose. Reading to a child age four
or younger raises the child’s IQ, especially if the child is an
active participant in the reading, encouraged by the parent to
elaborate. After age four, reading to the child does not raise
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 176
IQ but continues to accelerate the child’s language develop-
ment. Preschool boosts a child’s IQ by more than four points,
and if the school includes language training, by more than
seven points. Again, there is no body of evidence supporting
the conclusion that early education, preschool, or language
training would show IQ gains in children from better- off fami-
lies, where they already benefi t from the advantages of a richer
environment.13
Brain Training?
What about “brain training” games? We’ve seen a new kind
of business emerge, pitching online games and videos promis-
ing to exercise your brain like a muscle, building your cogni-
tive ability. These products are largely founded on the fi nd-
ings of one Swiss study, reported in 2008, which was very
limited in scope and has not been replicated.14 The study
focused on improving “fl uid intelligence”: the facility for ab-
stract reasoning, grasping unfamiliar relationships, and solv-
ing new kinds of problems. Fluid intelligence is one of two
kinds of intelligence that make up IQ. The other is crystallized
intelligence, the store house of knowledge we have accumu-
lated through the years. It’s clear that we can increase our crys-
tallized intelligence through effective learning and memory
strategies, but what about our fl uid intelligence?
A key determiner of fl uid intelligence is the capacity of a
person’s working memory— the number of new ideas and re-
lationships that a person can hold in mind while working
through a problem (especially with some amount of distrac-
tion). The focus of the Swiss study was to give participants
tasks requiring increasingly diffi cult working memory chal-
lenges, holding two different stimuli in mind for progressively
longer periods of distraction. One stimulus was a sequence of
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 177
numerals. The other was a small square of light that appeared
in varying locations on a screen. Both the numerals and the
locations of the square changed every three seconds. The task
was to decide— while viewing a sequence of changed numer-
als and repositioned squares— for each combination of nu-
meral and square, whether it matched a combination that had
been presented n items back in the series. The number n in-
creased during the trials, making the challenge to working
memory progressively more arduous.
All the participants were tested on fl uid intelligence tasks
at the outset of the study. Then they were given these increas-
ingly diffi cult exercises of their working memory over periods
ranging up to nineteen days. At the end of the training, they
were retested for fl uid intelligence. They all performed better
than they had before the training, and those who had engaged
in the training for the longest period showed the greatest im-
provement. These results showed for the fi rst time that fl uid
intelligence can be increased through training.
What’s the criticism?
The participants were few (only thirty- fi ve) and were all
recruited from a similar, highly intelligent population. More-
over, the study focused on only one training task, so it is un-
clear to what extent it might apply to other working- memory
training tasks, or whether the results are really about working
memory rather than some peculiarity of the par tic u lar train-
ing. Finally, the durability of the improved per for mance is
unknown, and the results, as noted, have not been replicated
by other studies. The ability to replicate empirical results is
the bedrock of scientifi c theory. The website PsychFileDrawer
.org keeps a list of the top twenty psychological research stud-
ies that the site’s users would like to see replicated, and the
Swiss study is the fi rst on the list. A recent attempt whose re-
sults were published in 2013 failed to fi nd any improvements
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 178
to fl uid intelligence as a result of replicating the exercises in
the Swiss study. Interestingly, participants in the study be-
lieved that their mental capacities had been enhanced, a phe-
nomenon the authors describe as illusory. However, the au-
thors also acknowledge that an increased sense of self- effi cacy
can lead to greater per sis tence in solving diffi cult problems,
encouraged by the belief that training has improved one’s
abilities.15
The brain is not a muscle, so strengthening one skill does
not automatically strengthen others. Learning and memory
strategies such as retrieval practice and the building of mental
models are effective for enhancing intellectual abilities in the
material or skills practiced, but the benefi ts don’t extend to
mastery of other material or skills. Studies of the brains of ex-
perts show enhanced myelination of the axons related to the
area of expertise but not elsewhere in the brain. Observed
myelination changes in piano virtuosos are specifi c to piano
virtuosity. But the ability to make practice a habit is general-
izable. To the extent that “brain training” improves one’s ef-
fi cacy and self- confi dence, as the purveyors claim, the benefi ts
are more likely the fruits of better habits, such as learning how
to focus attention and persist at practice.
Richard Nisbett writes of environmental “multipliers” that
can deliver a disproportionate effect from a small ge ne tic
predisposition— the kid who is ge ne tically just a little bit more
curious becomes signifi cantly smarter if she’s in an environ-
ment that feeds curiosity. Now stand that notion on its head.
Since it’s unlikely I’ll be raising my IQ anytime soon, are there
strategies or behaviors that can serve as cognitive “multipli-
ers” to amp up the per for mance of the intelligence I’ve already
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 179
got? Yes. Here are three: embracing a growth mindset, prac-
ticing like an expert, and constructing memory cues.
Growth Mindset
Let’s return to the old saw “If you think you can, or you
think you can’t, you’re right.” If turns out there is more truth
here than wit. Attitude counts for a lot. The studies of the
psychologist Carol Dweck have gotten huge attention for
showing just how big an impact one simple conviction can
have on learning and per for mance: the belief that your level
of intellectual ability is not fi xed but rests to a large degree in
your own hands.16
Dweck and her colleagues have replicated and expanded
on their results in many studies. In one of the early experi-
ments, she ran a workshop for low- performing seventh grad-
ers at a New York City ju nior high school, teaching them
about the brain and about effective study techniques. Half the
group also received a pre sen ta tion on memory, but the other
half were given an explanation of how the brain changes as a
result of effortful learning: that when you try hard and learn
something new, the brain forms new connections, and these
new connections, over time, make you smarter. This group was
told that intellectual development is not the natural unfolding
of intelligence but results from the new connections that are
formed through effort and learning. After the workshop, both
groups of kids fi ltered back into their classwork. Their teach-
ers were unaware that some had been taught that effortful
learning changes the brain, but as the school year unfolded,
those students adopted what Dweck calls a “growth mindset,”
a belief that their intelligence was largely within their own
control, and they went on to become much more aggressive
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 180
learners and higher achievers than students from the fi rst
group, who continued to hold the conventional view, what
Dweck calls a “fi xed mindset,” that their intellectual ability
was set at birth by the natural talents they were born with.
Dweck’s research had been triggered by her curiosity over
why some people become helpless when they encounter chal-
lenges and fail at them, whereas others respond to failure by
trying new strategies and redoubling their effort. She found
that a fundamental difference between the two responses lies in
how a person attributes failure: those who attribute failure to
their own inability—“I’m not intelligent”— become helpless.
Those who interpret failure as the result of insuffi cient effort or
an in effec tive strategy dig deeper and try different approaches.
Dweck came to see that some students aim at per for mance
goals, while others strive toward learning goals. In the fi rst
case, you’re working to validate your ability. In the second,
you’re working to acquire new knowledge or skills. People
with per for mance goals unconsciously limit their potential. If
your focus is on validating or showing off your ability, you
pick challenges you are confi dent you can meet. You want to
look smart, so you do the same stunt over and over again. But
if your goal is to increase your ability, you pick ever- increasing
challenges, and you interpret setbacks as useful information
that helps you to sharpen your focus, get more creative, and
work harder. “If you want to demonstrate something over
and over, ‘ability’ feels like something static that lies inside of
you, whereas if you want to increase your ability, it feels dy-
namic and malleable,” Dweck says. Learning goals trigger
entirely different chains of thought and action from per for-
mance goals.17
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 181
Paradoxically, a focus on per for mance trips up some star
athletes. Praised for being “naturals,” they believe their per-
for mance is a result of innate gifts. If they’re naturals, the idea
goes, they shouldn’t have to work hard to excel, and in fact
many simply avoid practicing, because a need to practice is
public evidence that their natural gifts are not good enough to
cut the mustard after all. A focus on per for mance instead of
on learning and growing causes people to hold back from risk
taking or exposing their self- image to ridicule by putting
themselves into situations where they have to break a sweat
to deliver the critical outcome.
Dweck’s work has extended into the realm of praise and the
power it has in shaping the way people respond to challenges.
Here’s an example. A group of fi fth grade students are indi-
vidually given a puzzle to solve. Some of the students who solve
the puzzle are praised for being smart; other students who
solve it are praised for having worked hard. The students are
then invited to choose another puzzle: either one of similar
diffi culty or one that’s harder but that they would learn from
by making the effort to try solving. A majority of the students
who are praised for their smarts pick the easier puzzle; 90
percent of the kids praised for effort pick the harder one.
In a twist on this study, students get puzzles from two
people, Tom and Bill. The puzzles Tom gives the students can
be solved with effort, but the ones Bill gives them cannot be
solved. Every student gets puzzles from both Tom and Bill.
After working to solve the puzzles, some of the kids are praised
for being smart, and some for their effort. In a second round,
the kids get more puzzles from both Tom and Bill, and this
time all the puzzles are solvable. Here’s the surprise: of the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 182
students who were praised for being smart, few solved the
puzzles they got from Bill, even though they were the same
puzzles these students had solved earlier when they got them
from Tom. For those who saw being considered smart as para-
mount, their failure to solve Bill’s puzzles in the fi rst round in-
stilled a sense of defeat and helplessness.
When you praise for intelligence, kids get the message that
being seen as smart is the name of the game. “Emphasizing
effort gives a child a rare variable they can control,” Dweck
says. But “emphasizing natural intelligence takes it out of a
child’s control, and it provides no good recipe for responding
to a failure.”18
Paul Tough, in his recent book How Children Succeed, draws
on Dweck’s work and others’ to make the case that our suc-
cess is less dependent on IQ than on grit, curiosity, and per-
sis tence. The essential ingredient is encountering adversity
in childhood and learning to overcome it. Tough writes that
children in the lowest strata of society are so beset by chal-
lenges and starved of resources that they don’t stand a chance
of experiencing success. But, and here’s another paradox, kids
at the top of the heap, who are raised in cosseted settings,
praised for being smart, bailed out of predicaments by he li-
cop ter parents, and never allowed to fail or overcome adver-
sity on their own initiative, are also denied the character-
building experiences essential for success later in life.19 A kid
who’s born on third base and grows up thinking she hit a tri-
ple is unlikely to embrace the challenges that will enable her
to discover her full potential. A focus on looking smart keeps
a person from taking risks in life, the small ones that help
people rise toward their aspirations, as well as the bold, vi-
sionary moves that lead to greatness. Failure, as Carol Dweck
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 183
tells us, gives you useful information, and the opportunity to
discover what you’re capable of doing when you really set
your mind to it.
The takeaway from Dweck, Tough, and their colleagues
working in this fi eld is that more than IQ, it’s discipline, grit,
and a growth mindset that imbue a person with the sense of
possibility and the creativity and per sis tence needed for higher
learning and success. “Study skills and learning skills are inert
until they’re powered by an active ingredient,” Dweck says.
The active ingredient is the simple but nonetheless profound
realization that the power to increase your abilities lies largely
within your own control.
Deliberate Practice
When you see stellar per for mances by an expert in any
fi eld— a pianist, chess player, golfer— perhaps you marvel at
what natural talent must underlie their abilities, but expert
per for mance does not usually rise out of some ge ne tic predis-
position or IQ advantage. It rises from thousands of hours of
what Anders Ericsson calls sustained deliberate practice. If
doing something repeatedly might be considered practice, de-
liberate practice is a different animal: it’s goal directed, often
solitary, and consists of repeated striving to reach beyond
your current level of per for mance. What ever the fi eld, expert
per for mance is thought to be garnered through the slow acqui-
sition of a larger number of increasingly complex patterns, pat-
terns that are used to store knowledge about which actions
to take in a vast vocabulary of different situations. Witness a
champion chess player. In studying the positions on a board, he
can contemplate many alternative moves and the countless dif-
ferent directions each might precipitate. The striving, failure,
problem solving, and renewed attempts that characterize
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 184
deliberate practice build the new knowledge, physiological
adaptations, and complex mental models required to attain
ever higher levels.
When Michelangelo fi nally completed painting over 400
life size fi gures on the ceiling of the Sistine Chapel, he is re-
ported to have written, “If people knew how hard I worked to
get my mastery, it wouldn’t seem so wonderful after all.” What
appeared to his admirers to have fl owed from sheer genius
had required four torturous years of work and dedication.20
Deliberate practice usually isn’t enjoyable, and for most learn-
ers it requires a coach or trainer who can help identify areas
of per for mance that need to be improved, help focus atten-
tion on specifi c aspects, and provide feedback to keep percep-
tion and judgment accurate. The effort and per sis tence of
deliberate practice remodel the brain and physiology to ac-
commodate higher per for mance, but achieving expertise in
any fi eld is par tic u lar to the fi eld. It does not confer some kind
of advantage or head start toward gaining expertise in an-
other domain. A simple example of practice remodeling the
brain is the treatment of focal hand dystonia, a syndrome af-
fecting some guitarists and pianists whose repetitive playing
has rewired their brains to think that two fi ngers have been
fused into one. Through a series of challenging exercises,
they can be helped gradually to retrain their fi ngers to move
separately.
One reason that experts are sometimes perceived to pos-
sess an uncanny talent is that some can observe a complex
per for mance in their fi eld and later reconstruct from memory
every aspect of that per for mance, in granular detail. Mozart
was famous for being able to reconstruct complex musical
scores after a single hearing. But this skill, Ericsson says, rises
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 185
not out of some sixth sense but from an expert’s superior per-
ception and memory within his domain, which are the result
of years of acquired skill and knowledge in that domain.
Most people who achieve expertise in a fi eld are destined to
remain average performers in the other realms of life.
Ten thousand hours or ten years of practice was the aver-
age time the people Ericsson studied had invested to become
expert in their fi elds, and the best among them had spent the
larger percentage of those hours in solitary, deliberate prac-
tice. The central idea here is that expert per for mance is a
product of the quantity and the quality of practice, not of ge-
ne tic predisposition, and that becoming expert is not beyond
the reach of normally gifted people who have the motivation,
time, and discipline to pursue it.
Memory Cues
Mnemonic devices, as we mentioned, are mental tools to help
hold material in memory, cued for ready recall. (Mnemosyne,
one of the nine Muses of Greek mythology, was the goddess
of memory.) Some examples of simple mnemonic devices are
acronyms, like “ROY G BIV” for the colors of the rainbow,
and reverse acronyms, as in “I Value Xylophones Like Cows
Dig Milk” for the ascending value of Roman numerals from
1 to 1000 (e.g., V = 5; D = 500).
A memory palace is a more complex type of mnemonic
device that is useful for or ga niz ing and holding larger vol-
umes of material in memory. It’s based on the method of loci,
which goes back to the ancient Greeks and involves associat-
ing mental images with a series of physical locations to help
cue memories. For example, you imagine yourself within a
space that is very familiar to you, like your home, and then
you associate prominent features of the space, like your easy
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 186
chair, with a visual image of something you want to remember.
(When you think of your easy chair you may picture a limber
yogi sitting there, to remind you to renew your yoga lessons.)
The features of your home can be associated with a countless
number of visual cues for retrieving memories later, when you
simply take an imaginary walk through the house. If it’s impor-
tant to recall the material in a certain order, the cues can be se-
quenced along the route through your house. (The method of
loci is also used to associate cues with features you encounter
along a very familiar journey, like your walk to the corner store.)
As we write this passage, a group of students in Oxford,
En gland, are constructing memory palaces to prepare for
their A-level exams in psychology. Every week for six weeks,
they and their instructor have visited a different café in town,
where they have relaxed over coffee, familiarized themselves
with the layout of the place, and discussed how they might
imagine it occupied with vivid characters who will cue from
memory important aspects of psychology that they will need
to write about at exam time.
We’ll come back to these students, but fi rst a few more
words about this technique, which is surprisingly effective
and derives from the way imagery serves to contribute vivid-
ness and connective links to memory. Humans remember
pictures more easily than words. (For example, the image of
an elephant is easier to recall than the word “elephant.”) So
it stands to reason that associating vivid mental images with
verbal or abstract material makes that material easier to re-
trieve from memory. A strong mental image can prove as se-
cure and bountiful as a loaded stringer of fi sh. Tug on it, and
a whole day’s catch comes to the surface. When a friend is
reminding you of a conversation with somebody the two of
you met on a trip, you struggle to recall it. She tells you where
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 187
the discussion happened, and you picture the place. Ah, yes, it
all comes fl ooding back. Images cue memories.21
Mark Twain wrote about his personal experiences with this
phenomenon in an article published by Harper’s. In his days
on the speaking circuit, Twain used a list of partial sentences
to prompt himself through the different phases of his remarks,
but he found the system unsatisfactory— when you glance at
snippets of text, they all look alike. He experimented with al-
ternatives, fi nally hitting on the idea of outlining his speech in
a series of crude pencil sketches. The sketches did the job. A
haystack with a snake under it told him where to start his
story about his adventures in Nevada’s Carson Valley. An um-
brella tilted against a stiff wind took him to the next part of
his story, the fi erce winds that blew down out of the Sierras at
about two o’clock every afternoon. And so on. The power of
these sketches to evoke memory impressed Twain and gave
rise one day to an idea for helping his children, who were still
struggling to learn the kings and queens of En gland, despite
long hours invested by their nanny in trying to hammer the
names and dates into them through brute repetition. It dawned
on Twain to try visualizing the successive reigns.
We were at the farm then. From the house porch the grounds
sloped gradually down to the lower fence and rose on the
right to the high ground where my small work den stood. A
carriage road wound through the grounds and up the hill. I
staked it out with the En glish monarchs, beginning with [Wil-
liam] the Conqueror, and you could stand on the porch and
clearly see every reign and its length, from the Conquest down
to Victoria, then in the forty- sixth year of her reign— EIGHT
HUNDRED AND SEVENTEEN YEARS of En glish history
under your eye at once! . . .
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 188
I mea sured off 817 feet of the roadway, a foot representing
a year, and at the beginning and end of each reign I drove a
three- foot white- pine stake in the turf by the roadside and
wrote the name and dates on it.
Twain and the children sketched icons for each of the mon-
archs: a whale for William the Conqueror, because both names
begin with W and because “it is the biggest fi sh that swims, and
William is the most conspicuous fi gure in En glish history”; a
hen for Henry I, and so forth.
We got a good deal of fun out of the history road; and exer-
cise, too. We trotted the course from the Conqueror to the
study, the children calling out the names, dates, and length of
reigns as we passed the stakes. . . . The children were encour-
aged to stop locating things as being “over by the arbor,” or “in
the oak [copse],” or “up at the stone steps,” and say instead
that the things were in Stephen, or in the Commonwealth, or
in George III. They got the habit without trouble. To have the
long road mapped out with such exactness was a great boon
for me, for I had the habit of leaving books and other articles
lying around everywhere, and had not previously been able to
defi nitely name the place, and so had often been obliged to go
to fetch them myself, to save time and failure; but now I could
name the reign I left them in, and send the children.22
Rhyme schemes can also serve as mnemonic tools. The peg
method is a rhyme scheme for remembering lists. Each num-
ber from 1 to 20 is paired with a rhyming, concrete image: 1
is bun, 2 is shoe, 3 is tree, 4 is store, 5 is hive, 6 is tricks, 7 is
heaven, 8 is gate, 9 is twine, 10 is pen. (After 10 you add
penny- one and start over with three- syllable cue words: 11 is
penny- one, setting sun; 12 is penny- two, airplane glue; 13 is
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 189
penny- three, bumble bee; and so on up to 20.) You use the
rhyming concrete images as “pegs” on which to “hang” items
you want to remember, such as the tasks you want to get done
today. These twenty images stay with you, always at the ready
whenever you need help to remember a list of things. So when
you’re running errands: bun gives you the image of a hairstyle
and reminds you to buy a hat for your ski trip; shoe reminds
you of being well dressed, prompting you to pick up the dry
cleaning; tree reminds you of family tree, cuing that birthday
card for your cousin. The rhyming images stay the same, while
the associations they evoke change each time you need to hold
a new list in mind.
A song that you know well can provide a mnemonic
structure, linking the lyrics in each musical phrase to an im-
age that will cue retrieval of the desired memory. According
to the anthropologist Jack Weatherford, the preeminent his-
torian of Genghis Khan and the Mongol Empire, traditional
poems and songs seem to have been used as mnemonic de-
vices for sending messages accurately over vast distances,
from China at one end of the empire to Eu rope at the other
end. The military were forbidden from sending written mes-
sages, and how they communicated remains a secret, but
Weatherford thinks mnemonic devices were a likely method.
He notes that the Mongol song known as the Long Song, for
example, which describes the movement of a horse, can be
sung in varying tones and trills so as to communicate move-
ment through a par tic u lar location, like a crossing of the steppe
or of the low mountains.
The versatility of mnemonic devices is almost endless. What
they hold in common is a structure of some kind— number
scheme, travel route, fl oor plan, song, poem, aphorism,
acronym— that is deeply familiar and whose elements can be
easily linked to the target information to be remembered.23
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 190
To return to the psychology students preparing for their
A-level exams: In a classroom at Bellerbys College in Oxford,
a dark- haired eighteen- year- old whom we’ll call Marlys sits
down to write her A2 exams in psychology. She will be asked
to write fi ve essays over the course of two testing sessions to-
taling three and a half hours. A-level courses are the British
equivalent of Advanced Placement courses in the United States
and are prerequisites for going on to university.
Marlys is under a lot of pressure. For one thing, her exam
scores will make the difference in whether or not she gets into
the university of her choice— she has applied to the London
School of Economics. To be assured a spot in a top university in
the United Kingdom, students are required to take A-levels
in three subjects, and the grades they must earn are published
in advance by the universities. It’s not at all unusual that they
are required to earn an A grade in each subject. If they earn less
than the required grade, they must compete in a diffi cult clear-
ing pro cess by which the universities fi ll up their remaining
spaces, a pro cess that bears a lot in common with a lottery.
If that weren’t stress-inducing enough, the scope of the
material for which Marlys must be prepared to show mastery
in the next hour and a half is enormous. She and her fellow
psychology students have studied six major topics in their
second year of A-level preparations: eating behavior, aggres-
sion, relationships, schizo phre nia, anomalistic psychology,
and the methods of psychological research. Within each of the
fi rst fi ve topics she must be prepared to write essays on seven
different questions. Each essay must illuminate the answer in
twelve short paragraphs that describe, for instance, the thesis
or condition, the extant research and its signifi cance, the coun-
tervailing opinions, any biological treatments (say, for schizo-
phre nia), and how these relate to the foundational concepts
of psychology that she mastered for her fi rst- year A-levels. So
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 191
she faces: Five major topics, times seven essay questions for
each topic, with a dozen succinct, well- argued paragraphs in
each essay to show mastery of the subject. In other words, the
universe of different essays she must master going into exams
is a total of thirty- fi ve—plus a series of short answers to ques-
tions on psychological research methods. Marlys knows which
of the main topics will be the subject of today’s exam, but she
has no idea which essay questions will be assigned, so she’s
had to prepare herself to write on all of them.
Many students who reach this point simply freeze. Despite
being well grounded in their material, the stakes at play can
make their minds go blank the moment they confront the
empty exam booklet and the proctor’s ticking clock. That’s
where having taken the time to construct a memory palace
proves as good as gold. It’s not important that you understand
the intricacies of British A-levels, just that they are diffi cult and
highly consequential, which is why mnemonic devices are such
a welcome tool at exam time.
Today, the three test topics turn out to be evolutionary ex-
planations of human aggression, the psychological and bio-
logical treatments for schizo phre nia, and the success and
failure of dieting. Okay. For aggression, Marlys has got the
she- wolf with her hungry pups at the window of the Krispy
Kreme shop on Castle Street. For schizo phre nia, she’s got the
over- caffeinated barista at the Starbucks on High Street. For
dieting, that would be the extremely large and aggressive pot-
ted plant inside the café Pret- a-Manger on Cornmarket Street.
Excellent. She settles in her seat, sure of her knowledge and
her ability to call it up. She tackles the dieting essay fi rst. Pret-
a-Manger is Marlys’s memory palace for the safekeeping of
what she has learned about the success and failure of dieting.
Through a prior visit there, she has become thoroughly famil-
iar with its spaces and furnishings and populated them with
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 192
characters that are very familiar and vivid in her imagination.
The names and actions of the characters now serve as cues to
the dozen key points of her essay.
She enters the shop in her mind. La Fern (the man- eating
plant in “Little Shop of Horrors,” one of her favorite movies)
is holding Marlys’s friend Herman captive, her vines wrapped
tightly around him, restraining him from a large dish of mac
and cheese that sits just beyond his reach. Marlys opens her
exam book and begins to write. “Herman and Mack’s restraint
theory suggests that attempting not to overeat may actually
increase the probability of overeating. That is, in restrained
eaters, it is the disinhibition (loss of control) that is the cause
of overeating. . . .”
In this manner Marlys works her way through the café and
the essay. Herman breaks free of his restraints with a mighty
roar and makes a bee line for the plate, practically inhaling
the pasta to the point of bursting. “Restraint theory received
support in studies by Wardle and Beale, which found that
obese women who restrained their eating actually ate more
[inhaled the pasta] than obese women who took up exercise,
and more than those who made no changes to their diet or
lifestyle. However, Ogden argues . . .” and so on. Marlys moves
mentally through the café clockwise, encountering her cues
for the boundary model of hunger and satiety, biases arising
from cultural inclinations to obesity, the problems with diet
data based on anecdotal evidence, metabolic differences related
to high levels of lipoprotein lipase levels (“little pink lemons”),
and the rest.
From Pret- a-Manger she moves on to the Krispy Kreme
shop, where a mental walk through the interior cues images
that in turn cue what she’s learned about the evolutionary
explanations of aggression. Then on to Starbucks, where the
crazed barista and the shop’s fl oorplan and clientele cue her
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 193
through twelve paragraphs on the biological treatments of
schizo phre nia.
Marlys’s psychology teacher at Bellerbys College is none other
than James Paterson, the boyish- looking Welshman who just
happens to be a rising fi gure in world memory competitions.24
When teachers at Bellerbys fi ll out the paperwork to take
students on fi eld trips, it’s typically to a lecture at the Saïd
Business School, or perhaps to the Ashmolean Museum or
Bodleian Library in Oxford. Not so with James. His paper-
work will more likely seek approval to take students to any of
half a dozen different cafés around town, comfortable settings
where they can tap into their imaginations and construct their
mnemonic schemes. In order for the students to nail all thirty-
fi ve essays securely in memory, they divide the topics into
several groupings. For one group they build memory palaces
in cafés and at familiar locations around the Bellerbys cam-
pus. For another group they use the peg method. Still other
groups they link to imagery in favorite songs and movies.
We should make one important point, though. Before Pat-
erson takes students on their mnemonic outings to construct
memory palaces, he has already thoroughly covered the mate-
rial in class so that they understand it.
Among Paterson’s former students who have graduated
from Bellerbys and gone on to use the technique at university
is Michela Seong- Hyun Kim, who described for us how she
prepares for her university- level exams in psychology. First,
she pulls together all her material from lecture slides, her out-
side reading, and her notes. She reduces this material to key
ideas— not whole sentences. These form the plan for her es-
say. Next she selects the site for her memory palace. She ties
each key idea to a location in the palace that she can visualize
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 194
in her mind’s eye. Then she populates each location with
something crazy that will link her to one of the key ideas.
When she sits in the exam hall and fi nds out the essay topics,
she takes ten minutes to mentally walk through the relevant
memory palaces and list the key ideas for each essay. If she’s
forgotten a point, she moves on to the next one and fi lls in the
blank later. Once the plan is sketched out, she sets to work,
free of the stressful anxiety that she won’t remember what
she’s learned under the pressure of getting it right.25 What she
does is not so different from what Mark Twain did when he
used sketches to remember his speeches.
Michela says that the idea of skipping a bullet point that
she cannot remember but will fi ll in later would have been
completely alien to her before learning to use mnemonics,
but the techniques have given her the confi dence to do this,
knowing that the content will come to mind momentarily. The
memory palace serves not as a learning tool but as a method
to or ga nize what’s already been learned so as to be readily
retrievable at essay time. This is a key point and helps to over-
come the typical criticism that mnemonics are only useful in
rote memorization. To the contrary, when used properly, mne-
monics can help or ga nize large bodies of knowledge to permit
their ready retrieval. Michela’s confi dence that she can pull up
what she knows when she needs it is a huge stress buster and
a time saver, James says.
It’s worth acknowledging that Krispy Kreme and Starbuck’s
shops are not often called palaces, but the mind is capable of
wondrous things.
At Paterson’s fi rst World Memory Championships, that rookie
year of 2006, he acquitted himself well by placing twelfth,
narrowly edging out the American Joshua Foer, who later
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 195
published an account of his experiences with mnemonics in
the book Moonwalking with Einstein. Paterson can memorize
the sequence of playing cards in a shuffl ed deck in less than
two minutes, hand you the deck, and then recite them back to
you with his eyes closed. Give him an hour, and he will mem-
orize ten or twelve decks and recite them back without error.
Top champs can memorize a single deck in thirty seconds or
less and upward of twenty- fi ve decks in an hour, so Paterson
has a ways to go, but he’s a dedicated competitor and coming
on strong, building his skills and memory tools. For example,
just as the peg method involves memorizing an image for the
digits 1 through 10 (1 is bun, 2 is shoe, etc.), in order to re-
member much longer strings of digits, Paterson has commit-
ted to memory a unique image for every numeral from 0 to
1,000. This kind of achievement takes long hours of practice
and intense focus— the kind of solitary striving that Anders
Ericsson tells us characterizes the acquisition of expertise. The
thousand images locked into memory took Paterson a year to
master, fi tted in between the other demands of family, work,
and friends.
We caught up with Paterson in a school offi ce and asked if
he’d mind giving us a quick memory demonstration, to which
he readily agreed. We recited, once, the random number string
615392611333517. Paterson listened closely and then said,
“Okay. We’ll use this space.” He looked around at the fi xtures.
“I see this water cooler here becoming the space shuttle, which
is taking off just as an underground train comes shooting out
the bottom of the cooler. In the bookshelves there behind the
cooler, I see the rapper Eminem having a gunfi ght with Leslie
Nielsen from Naked Gun, while Lieutenant Columbo looks
down on them.”26
How to make sense of this? He remembers digits in groups
of three. Every three- digit number is a distinct image. For
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 196
example, the number 615 is always a space shuttle, 392 is al-
ways the Embankment tube station in London, 611 is Leslie
Nielsen, 333 is Eminem, and 517 is Lieutenant Columbo. To
make sense of these images, you need to understand another,
underlying mnemonic: for each numeral 0 through 9, James
has associated a sound of speech. The numeral 6 is always a
Sheh or Jeh sound, the 1 is always a Tuh or Duh sound, and 5
is an L sound. So the image for the number 615 is Sheh Tuh
L, or shuttle. Virtually every three- digit number from 000 to
999 lives in Paterson’s mind as a unique image that is an
embodiment of these sounds. For our spontaneous quiz, for
example, he drew on these images in addition to the space
shuttle:
392 3 = m, 9 = b, 2 = n embankment
611 6 = sh, 1 = t, 1 = t shootout
333 3 = m, 3 = m, 3 = m Eminem
517 5 = l, 1 = t, 7 = c Lt Columbo
In the memory championship event of spoken numbers,
which are read aloud to contestants at the rate of one per
second, Paterson can memorize and recite back seventy- four
without error, and, with much practice, he’s raising that count.
(“My wife calls herself a memory widow.”) Without mne-
monic tools, the maximum number of digits most people can
hold in working memory is about seven. That is why local
telephone numbers were designed to be no more than seven
digits long. By the way, at the time of this writing the world
record in spoken digits—what psychologists call memory
span—is 364 digits (held by Johannes Mallow of Germany).
James is quick to acknowledge that he was fi rst drawn to
mnemonics as a shortcut for his studies. “Not the best of mo-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 197
tives,” he admits. He taught himself the techniques and became
a bit of a slacker, walking into exams knowing he had all the
names, dates, and related facts readily at hand.
What he didn’t have, he discovered, was mastery of the
concepts, relationships, and underlying principles. He had the
mountaintops but not the mountain range, valleys, rivers, or
the fl ora and fauna that compose the fi lled- in picture that con-
stitutes knowledge.
Mnemonic devices are sometimes discounted as tricks of
memory, not tools that fundamentally add to learning, and in
a sense this is correct. The value of mnemonics to raise intel-
lectual abilities comes after mastery of new material, as the
students at Bellerbys are using them: as handy mental pockets
for fi ling what they’ve learned, and linking the main ideas in
each pocket to vivid memory cues so that they can readily
bring them to mind and retrieve the associated concepts and
details, in depth, at the unexpected moments that the need
arises.
When Matt Brown, the jet pi lot, describes his hours on
the fl ight deck of a simulator drilling on the rhythm of the
different hand movements required by potential emergencies,
he reenacts distinct patterns he’s memorized for different con-
tingencies, choreographies of eye and hand, where the correct
and complete sequence of instruments and switches is para-
mount. Each different choreography is a mnemonic for a cor-
rective maneuver.
Karen Kim is a virtuoso violinist. When we spoke with her,
Kim was second violin in the world- renowned string ensem-
ble Parker Quartet, who play much of their material from
memory, a rarity in classical music. Second violin is often
largely accompanimental, and the mnemonic for memorizing
the harmonies is the main melodic theme. “You sing the mel-
ody in your head,” Kim says, “and you know that when the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 198
melody goes to this place, you change harmony.” 27 The har-
monies of some works, like fugues, with up to four themes
that pass around the group in intricate ways, are especially
challenging to memorize. “You need to know that while I’m
playing the second theme, you’re playing the fi rst. Memoriz-
ing the fugues is very diffi cult. I need to learn everybody else’s
part better. Then I start to recognize patterns that I maybe
knew intellectually before, but I wasn’t listening out for them.
Memorizing the harmonies is a big part of knowing the archi-
tecture of the piece, the map of it.” When the quartet is mas-
tering a new piece, they spend a lot of time playing through
things slowly without the sheet music, and then gradually
speeding it up. Think Vince Dooley gradually synchronizing
the different positions on the Georgia Bulldogs football team
as they tailor their plays to take on a new Saturday night op-
ponent. Or the neurosurgeon Mike Ebersold, examining a
gunshot victim in the emergency room and methodically re-
hearsing what he’s likely to encounter in a brain surgery that
he’s about to perform.
Seeing the pattern of physical movements as a kind of cho-
reography, visualizing a complex melody as it is handed off
like a football from one player to another, “seeing the map of
it”: all are mnemonic cues to memory and per for mance.
With continued retrieval, complex material can become
second nature to a person and the mnemonic cues are no lon-
ger needed: you consolidate concepts like Newton’s 3 laws of
motion into mental models that you use as a kind of short-
hand. Through repeated use, your brain encodes and “chunks”
sequences of motor and cognitive actions, and your ability to
recall and apply them becomes as automatic as habit.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Increase Your Abilities ê 199
The Takeaway
It comes down to the simple but no less profound truth that
effortful learning changes the brain, building new connections
and capability. This single fact— that our intellectual abilities
are not fi xed from birth but are, to a considerable degree,
ours to shape— is a resounding answer to the nagging voice
that too often asks us “Why bother?” We make the effort be-
cause the effort itself extends the boundaries of our abilities.
What we do shapes who we become and what we’re capable
of doing. The more we do, the more we can do. To embrace
this principle and reap its benefi ts is to be sustained through
life by a growth mindset.
And it comes down to the simple fact that the path to
complex mastery or expert per for mance does not necessarily
start from exceptional genes, but it most certainly entails
self- discipline, grit, and per sis tence; with these qualities in
healthy mea sure, if you want to become an expert, you prob-
ably can. And what ever you are striving to master, whether
it’s a poem you wrote for a friend’s birthday, the concept of
classical conditioning in psychology, or the second violin
part in Hayden’s Fifth Symphony, conscious mnemonic de-
vices can help to or ga nize and cue the learning for ready re-
trieval until sustained, deliberate practice and repeated use
form the deeper encoding and subconscious mastery that char-
acterize expert per for mance.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

200
No matter what you may set your sights
on doing or becoming, if you want to be a contender, it’s mas-
tering the ability to learn that will get you in the game and
keep you there.
In the preceding chapters, we resisted the temptation to be-
come overtly prescriptive, feeling that if we laid out the big
ideas from the empirical research and illustrated them well
through examples, you could reach your own conclusions
about how best to apply them. But early readers of those chap-
ters urged us to get specifi c with practical advice. So we do
that here.
We start with tips for students, thinking in par tic u lar of
high school, college, and graduate school students. Then we
speak to lifelong learners, to teachers, and fi nally to trainers.
While the fundamental principles are consistent across these
groups, the settings, life stages, and learning materials differ.
8
Make It Stick
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 201
To help you envision how to apply these tips, we tell the sto-
ries of several people who, one way or another, have already
found their way to these strategies and are using them to great
effect.
Learning Tips for Students
Remember that the most successful students are those who
take charge of their own learning and follow a simple but
disciplined strategy. You may not have been taught how to do
this, but you can do it, and you will likely surprise yourself
with the results.
Embrace the fact that signifi cant learning is often, or even
usually, somewhat diffi cult. You will experience setbacks. These
are signs of effort, not of failure. Setbacks come with striving,
and striving builds expertise. Effortful learning changes your
brain, making new connections, building mental models, in-
creasing your capability. The implication of this is powerful:
Your intellectual abilities lie to a large degree within your
own control. Knowing that this is so makes the diffi culties
worth tackling.
Following are three keystone study strategies. Make a habit
of them and structure your time so as to pursue them with
regularity.
Practice Retrieving New Learning from Memory
What does this mean? “Retrieval practice” means self- quizzing.
Retrieving knowledge and skill from memory should become
your primary study strategy in place of rereading.
How to use retrieval practice as a study strategy: When you
read a text or study lecture notes, pause periodically to ask
yourself questions like these, without looking in the text: What
are the key ideas? What terms or ideas are new to me? How
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 202
would I defi ne them? How do the ideas relate to what I al-
ready know?
Many textbooks have study questions at the ends of the
chapters, and these are good fodder for self- quizzing. Gener-
ating questions for yourself and writing down the answers is
also a good way to study.
Set aside a little time every week throughout the semester
to quiz yourself on the material in a course, both the current
week’s work and material covered in prior weeks.
When you quiz yourself, check your answers to make sure
that your judgments of what you know and don’t know are
accurate.
Use quizzing to identify areas of weak mastery, and focus
your studying to make them strong.
The harder it is for you to recall new learning from mem-
ory, the greater the benefi t of doing so. Making errors will not
set you back, so long as you check your answers and correct
your mistakes.
What your intuition tells you to do: Most studiers focus on
underlining and highlighting text and lecture notes and slides.
They dedicate their time to rereading these, becoming fl uent
in the text and terminology, because this feels like learning.
Why retrieval practice is better: After one or two reviews of
a text, self- quizzing is far more potent for learning than ad-
ditional rereading. Why might this be so? This is explained
more fully in Chapter 2, but here are some of the high points.
The familiarity with a text that is gained from rereading
creates illusions of knowing, but these are not reliable indica-
tors of mastery of the material. Fluency with a text has two
strikes against it: it is a misleading indicator of what you have
learned, and it creates the false impression that you will re-
member the material.
By contrast, quizzing yourself on the main ideas and the
meanings behind the terms helps you to focus on the central
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 203
precepts rather than on peripheral material or on a profes-
sor’s turn of phrase. Quizzing provides a reliable mea sure of
what you’ve learned and what you haven’t yet mastered. More-
over, quizzing arrests forgetting. Forgetting is human nature,
but practice at recalling new learning secures it in memory and
helps you recall it in the future.
Periodically practicing new knowledge and skills through
self- quizzing strengthens your learning of it and your ability
to connect it to prior knowledge.
A habit of regular retrieval practice throughout the dura-
tion of a course puts an end to cramming and all- nighters.
You will need little studying at exam time. Reviewing the ma-
terial the night before is much easier than learning it.
How it feels: Compared to rereading, self- quizzing can feel
awkward and frustrating, especially when the new learning is
hard to recall. It does not feel as productive as rereading your
class notes and highlighted passages of text feels. But what
you don’t sense when you’re struggling to retrieve new learn-
ing is the fact that every time you work hard to recall a mem-
ory, you actually strengthen it. If you restudy something after
failing to recall it, you actually learn it better than if you had
not tried to recall it. The effort of retrieving knowledge or skills
strengthens its staying power and your ability to recall it in
the future.
Space Out Your Retrieval Practice
What does this mean? Spaced practice means studying infor-
mation more than once but leaving considerable time between
practice sessions.
How to use spaced practice as a study strategy: Establish a
schedule of self- quizzing that allows time to elapse between
study sessions. How much time? It depends on the material. If
you are learning a set of names and faces, you will need to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 204
review them within a few minutes of your fi rst encounter, be-
cause these associations are forgotten quickly. New material
in a text may need to be revisited within a day or so of your
fi rst encounter with it. Then, perhaps not again for several
days or a week. When you are feeling more sure of your mas-
tery of certain material, quiz yourself on it once a month. Over
the course of a semester, as you quiz yourself on new material,
also reach back to retrieve prior material and ask yourself
how that knowledge relates to what you have subsequently
learned.
If you use fl ashcards, don’t stop quizzing yourself on the
cards that you answer correctly a couple of times. Continue
to shuffl e them into the deck until they’re well mastered. Only
then set them aside— but in a pile that you revisit periodically,
perhaps monthly. Anything you want to remember must be
periodically recalled from memory.
Another way of spacing retrieval practice is to interleave the
study of two or more topics, so that alternating between them
requires that you continually refresh your mind on each topic
as you return to it.
What your intuition tells you to do: Intuition persuades us
to dedicate stretches of time to single- minded, repetitive prac-
tice of something we want to master, the massed “practice-
practice- practice” regime we have been led to believe is essen-
tial for building mastery of a skill or learning new knowledge.
These intuitions are compelling and hard to distrust for two
reasons. First, as we practice a thing over and over we often
see our per for mance improving, which serves as a powerful
reinforcement of this strategy. Second, we fail to see that the
gains made during single- minded repetitive practice come from
short- term memory and quickly fade. Our failure to perceive
how quickly the gains fade leaves us with the impression that
massed practice is productive.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 205
Moreover, most students, given their misplaced faith in
massed practice, put off review until exam time nears, and then
they bury themselves in the material, going over and over it,
trying to burn it into memory.
Why spaced practice is better: It’s a common but mistaken
belief that you can burn something into memory through sheer
repetition. Lots of practice works, but only if it’s spaced.
If you use self- quizzing as your primary study strategy and
space out your study sessions so that a little forgetting has
happened since your last practice, you will have to work harder
to reconstruct what you already studied. In effect, you’re “re-
loading” it from long- term memory. This effort to reconstruct
the learning makes the important ideas more salient and mem-
orable and connects them more securely to other knowledge
and to more recent learning. It’s a powerful learning strategy.
(How and why it works are discussed more thoroughly in
Chapter 4.)
How it feels: Massed practice feels more productive than
spaced practice, but it is not. Spaced practice feels more diffi –
cult, because you have gotten a little rusty and the material is
harder to recall. It feels like you’re not really getting on top
of it, whereas in fact, quite the opposite is happening: As you
reconstruct learning from long- term memory, as awkward as
it feels, you are strengthening your mastery as well as the
memory.
Interleave the Study of Different Problem Types
What does this mean? If you’re trying to learn mathematical
formulas, study more than one type at a time, so that you are
alternating between different problems that call for different
solutions. If you are studying biology specimens, Dutch paint-
ers, or the principles of macroeconomics, mix up the examples.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 206
How to use interleaved practice as a study strategy: Many
textbooks are structured in study blocks: They present the so-
lution to a par tic u lar kind of problem, say, computing the vol-
ume of a spheroid, and supply many examples to solve before
moving to another kind of problem (computing the volume of
a cone). Blocked practice is not as effective as interleaved prac-
tice, so here’s what to do.
When you structure your study regimen, once you reach
the point where you understand a new problem type and its
solution but your grasp of it is still rudimentary, scatter this
problem type throughout your practice sequence so that you
are alternately quizzing yourself on various problem types and
retrieving the appropriate solutions for each.
If you fi nd yourself falling into single- minded, repetitive
practice of a par tic u lar topic or skill, change it up: mix in the
practice of other subjects, other skills, constantly challenging
your ability to recognize the problem type and select the right
solution.
Harking back to an example from sports (Chapter 4), a
baseball player who practices batting by swinging at fi fteen
fastballs, then at fi fteen curveballs, and then at fi fteen change-
ups will perform better in practice than the player who mixes
it up. But the player who asks for random pitches during prac-
tice builds his ability to decipher and respond to each pitch as
it comes his way, and he becomes the better hitter.
What your intuition tells you to do: Most learners focus on
many examples of one problem or specimen type at a time,
wanting to master the type and “get it down cold” before mov-
ing on to study another type.
Why interleaved practice is better: Mixing up problem types
and specimens improves your ability to discriminate between
types, identify the unifying characteristics within a type, and
improves your success in a later test or in real- world settings
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 207
where you must discern the kind of problem you’re trying to
solve in order to apply the correct solution. (This is explained
more fully in Chapter 3.)
How it feels: Blocked practice— that is, mastering all of
one type of problem before progressing to practice another
type— feels (and looks) like you’re getting better mastery as
you go, whereas interrupting the study of one type to practice
a different type feels disruptive and counterproductive. Even
when learners achieve superior mastery from interleaved prac-
tice, they persist in feeling that blocked practice serves them
better. You may also experience this feeling, but you now have
the advantage of knowing that studies show that this feeling
is illusory.
Other Effective Study Strategies
ELABORATION improves your mastery of new material and
multiplies the mental cues available to you for later recall and
application of it (Chapter 4).
What is it? Elaboration is the pro cess of fi nding additional
layers of meaning in new material.
For instance: Examples include relating the material to
what you already know, explaining it to somebody else in your
own words, or explaining how it relates to your life outside of
class.
A powerful form of elaboration is to discover a meta phor
or visual image for the new material. For example, to better
grasp the principles of angular momentum in physics, visual-
ize how a fi gure skater’s rotation speeds up as her arms are
drawn into her body. When you study the principles of heat
transfer, you may understand conduction better if you imag-
ine warming your hands around a hot cup of cocoa. For ra-
diation, visualize how the sun pools in the den on a wintry
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 208
day. For convection, think of the life- saving blast of A/C as
your uncle squires you slowly through his favorite back- alley
haunts of Atlanta. When you learned about the structure of
an atom, your physics teacher may have used the analogy of
the solar system with the sun as the nucleus and electrons
spinning around like planets. The more that you can elabo-
rate on how new learning relates to what you already know,
the stronger your grasp of the new learning will be, and the
more connections you create to remember it later.
Later in this chapter, we tell how the biology professor
Mary Pat Wenderoth encourages elaboration among her stu-
dents by assigning them the task of creating large “summary
sheets.” Students are asked to illustrate on a single sheet the
various biological systems studied during the week and to
show graphically and through key words how the systems in-
terrelate with each other. This is a form of elaboration that
adds layers of meaning and promotes the learning of concepts,
structures, and interrelationships. Students who lack the good
fortune to be in Wenderoth’s class could adopt such a strategy
for themselves.
GENERATION has the effect of making the mind more recep-
tive to new learning.
What is it? Generation is an attempt to answer a question
or solve a problem before being shown the answer or the
solution.
For instance: On a small level, the act of fi lling in a missing
word in a text (that is, generating the word yourself rather
than having it supplied by the writer) results in better learning
and memory of the text than simply reading a complete text.
Many people perceive their learning is most effective when
it is experiential— that is, learning by doing rather than by
reading a text or hearing a lecture. Experiential learning is a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 209
form of generation: you set out to accomplish a task, you en-
counter a problem, and you consult your creativity and store-
house of knowledge to try to solve it. If necessary you seek
answers from experts, texts, or the Web. By wading into the
unknown fi rst and puzzling through it, you are far more likely
to learn and remember the solution than if somebody fi rst sat
you down to teach it to you. Bonnie Blodgett, an award- winning
gardener and writer, provides a strong example of generative
learning in Chapter 4.
You can practice generation when reading new class ma-
terial by trying to explain beforehand the key ideas you ex-
pect to fi nd in the material and how you expect they will
relate to your prior knowledge. Then read the material to
see if you were correct. As a result of having made the initial
effort, you will be more astute at gleaning the substance and
relevance of the reading material, even if it differs from your
expectation.
If you’re in a science or math course learning different types
of solutions for different types of problems, try to solve the
problems before you get to class. The Physics Department at
Washington University in St. Louis now requires students to
work problems before class. Some students take umbrage,
arguing that it’s the professor’s job to teach the solution, but
the professors understand that when students wrestle with con-
tent beforehand, classroom learning is stronger.
REFLECTION is a combination of retrieval practice and elabo-
ration that adds layers to learning and strengthens skills.
What is it? Refl ection is the act of taking a few minutes to
review what has been learned in a recent class or experience
and asking yourself questions. What went well? What could
have gone better? What other knowledge or experiences does
it remind you of? What might you need to learn for better
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 210
mastery, or what strategies might you use the next time to get
better results?
For instance: The biology professor Mary Pat Wenderoth
assigns weekly low- stakes “learning paragraphs” in which stu-
dents are asked to refl ect on what they learned the previous
week and to characterize how their class learning connects to
life outside the class. This is a fi ne model for students to adopt
for themselves and a more fruitful learning strategy than
spending hours transcribing lecture slides or class notes ver-
batim into a notebook.
CALIBRATION is the act of aligning your judgments of what
you know and don’t know with objective feedback so as to
avoid being carried off by the illusions of mastery that catch
many learners by surprise at test time.
What is it? Everyone is subject to a host of cognitive illu-
sions, some of which are described in Chapter 5. Mistaking
fl uency with a text for mastery of the underlying content is
just one example. Calibration is simply the act of using an
objective instrument to clear away illusions and adjust your
judgment to better refl ect reality. The aim is to be sure that
your sense of what you know and can do is accurate.
For instance: Airline pi lots use fl ight instruments to know
when their perceptual systems are misleading them about criti-
cal factors like whether the airplane is fl ying level. Students use
quizzes and practice tests to see whether they know as much
as they think they do. It’s worth being explicit here about the
importance of answering the questions in the quizzes that you
give yourself. Too often we will look at a question on a prac-
tice test and say to ourselves: Yup, I know that, and then move
down the page without making the effort to write in the an-
swer. If you don’t supply the answer, you may be giving in to
the illusion of knowing, when in fact you would have diffi –
culty rendering an accurate or complete response. Treat prac-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 211
tice tests as tests, check your answers, and focus your studying
effort on the areas where you are not up to snuff.
MNEMONIC DEVICES help you to retrieve what you have
learned and to hold arbitrary information in memory
(Chapter 7).
What are they? “Mnemonic” is from the Greek word for
memory, and mnemonic devices are like mental fi le cabinets.
They give you handy ways to store information and fi nd it
again when you need it.
For instance: Here is a very simple mnemonic device that
some schoolchildren are taught for remembering the US Great
Lakes in geographic order, from east to west: Old Elephants
Have Musty Skin. Mark Twain used mnemonics to teach his
children the succession of kings and queens of En gland, stak-
ing the sequence and length of their reigns along the wind-
ing driveway of his estate, walking it with the children, and
elaborating with images and storytelling. Psychology stu-
dents at Bellerbys College in Oxford use mnemonic devices
called memory palaces to or ga nize what they have learned and
must be prepared to expound upon in their A-level essay ex-
ams. Mnemonics are not tools for learning per se but for creat-
ing mental structures that make it easier to retrieve what you
have learned.
Brief stories follow of two students who have used these strat-
egies to rise to the top of their classes.
Michael Young, Medical Student
Michael Young is a high- achieving fourth- year medical stu-
dent at Georgia Regents University who pulled himself up from
rock bottom by changing the way he studies.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 212
Young entered medical school without the usual founda-
tion of premed coursework. His classmates all had back-
grounds in biochemistry, pharmacology, and the like. Medical
school is plenty tough under any circumstances, but in Young’s
case even more so for lack of a footing.
The scope of the challenge that lay before him became
abruptly evident. Despite his spending every available minute
studying his coursework, he barely eked out a 65 on his fi rst
exam. “Quite honestly, I got my butt kicked,” he says. “I was
blown away by that. I couldn’t believe how hard it was. It was
nothing like any kind of schooling I had done before. I mean,
you come to class, and in a typical day you get about four
hundred PowerPoint slides, and this is dense information.”1
Since spending more time studying wasn’t an option, Young
had to fi nd a way to make studying more effective.
He started reading empirical studies on learning and be-
came deeply interested in the testing effect. That’s how we fi rst
learned of him: He emailed us with questions about the appli-
cation of spaced retrieval practice in a medical school setting.
Looking back on that stressful period, Young says, “I didn’t
just want to fi nd somebody’s opinion about how to study.
Everybody has an opinion. I wanted real data, real research
on the issue.”
You might wonder how he got himself into medical school
without premed coursework. He had earned a master’s degree
in psychology and worked in clinical settings, eventually as a
drug addiction counselor. He teamed up with a lot of doctors,
and he slowly began to wonder if he would be happier in
medicine. Had he missed his calling? “I didn’t think of myself
as being especially intelligent, but I wanted to do more with
my life and the idea wouldn’t leave me.” One day he went to
the biology department of his local university, Columbus State
in Columbus, Georgia, and asked what courses he would need
to become a doctor. They laughed. “They said, ‘Well, nobody
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 213
from this school becomes a doctor. People at the University of
Georgia and Georgia Tech go to medical school, we haven’t
had anybody go to medical school in a de cade.’ ” Not to be
put off, Young cobbled together some courses. For example,
for the biology requirement, the only thing he could take at
Columbus State was a fi shing class. That was his biology course.
Within a year he had gotten what ever medical background
was available from the school, so he crammed for a month for
the Medical College Admission Test and managed to score just
well enough. He enrolled at Georgia Regents.
At which point he found himself very far indeed from be-
ing over the hump. As his fi rst exam made all too clear, the
road ahead went straight up. If he had any hope of climbing
it, something about his study habits had to change. So what
did change? He explains it this way:
I was big into reading, but that’s all I knew how to do for
studying. I would just read the material and I wouldn’t know
what else to do with it. So if I read it and it didn’t stick in
my memory, then I didn’t know what to do about that. What
I learned from reading the research [on learning] is that you
have to do something beyond just passively taking in the
information.
Of course the big thing is to fi gure out a way to retrieve the
information from memory, because that’s what you’re going
to be asked to do on the test. If you can’t do it while you’re
studying, then you’re not going to be able to do it on the test.
He became more mindful of that when he studied. “I would
stop. ‘Okay, what did I just read? What is this about?’ I’d have
to think about it. ‘Well, I believe it happens this way: The en-
zyme does this, and then it does that.’ And then I’d have to go
back and check if I was way off base or on the right track.”
The pro cess was not a natural fi t. “It makes you uncom-
fortable at fi rst. If you stop and rehearse what you’re reading
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 214
and quiz yourself on it, it just takes a lot longer. If you have a
test coming up in a week and so much to cover, slowing down
makes you pretty ner vous.” But the only way he knew of to
cover more material, his established habit of dedicating long
hours to rereading, wasn’t getting the results he needed. As
hard as it was, he made himself stick to retrieval practice long
enough at least to see if it worked. “You just have to trust the
pro cess, and that was really the biggest hurdle for me, was to
get myself to trust it. And it ended up working out really well
for me.”
Really well. By the time he started his second year, Young
had pulled his grades up from the bottom of his class of two
hundred students to join the high performers, and he has re-
mained there ever since.
Young spoke with us about how he adapted the principles of
spaced retrieval practice and elaboration to medical school,
where the challenges arise both from the sheer volume of mate-
rial to be memorized and from the need to learn how complex
systems work and how they interrelate with other systems. His
comments are illuminating.
On deciding what’s important: “If it’s lecture material and
you have four hundred PowerPoint slides, you don’t have time
to rehearse every little detail. So you have to say, ‘Well this is
important, and this isn’t.’ Medical school is all about fi guring
out how to spend your time.”
On making yourself answer the question: “When you go
back and review, instead of just rereading you need to see if
you can recall the learning. Do I remember what this stuff
was about? You always test yourself fi rst. And if you don’t
remember, then that’s when you go back and look at it and
try again.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 215
On fi nding the right spacing: “I was aware of the spacing
effect, and I knew that the longer you wait to practice re-
trieval the better it is for memory, but there’s also a trade- off
with how successful you are when you try to recall it. When
you have these long enzyme names, for example, and this step-
by- step pro cess of what the enzyme is doing, maybe if you
learn ten steps of what the enzyme is doing, you need to stop
and think, can I remember what those ten steps are? Once I
found a good strategy for how much to space practice and I
started seeing consistent results, it was easy to follow from
there because then I could just trust the pro cess and be confi –
dent that it was going to work.”
On slowing down to fi nd the meaning: Young has also
slowed down the speed at which he reads material, thinking
about meaning and using elaboration to better understand
it and lodge it in memory. “When I read that dopamine is re-
leased from the ventral tegmental area, it didn’t mean a lot
to me.” The idea is not to let words just “slide through your
brain.” To get meaning from the dopamine statement, he dug
deeper, identifi ed the structure within the brain and examined
images of it, capturing the idea in his mind’s eye. “Just having
that kind of visualization of what it looks like and where it is
[in the anatomy] really helps me to remember it.” He says
there’s not enough time to learn everything about everything,
but pausing to make it meaningful helps it stick.
Young’s impressive per for mance has not been lost on his
professors or his peers. He has been invited to tutor struggling
students, an honor few are given. He has been teaching them
these techniques, and they are pulling up their grades.
“What gets me is how interested people are in this. Like,
in medical school, I’ve talked to all of my friends about
it, and now they’re really into it. People want to know how
to learn.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 216
Timothy Fellows, Intro Psych Student
Stephen Madigan, a professor at the University of Southern
California, was astonished by the per for mance of a student in
his Psych 100 course. “It’s a tough course,” Madigan says. “I
use the most diffi cult, advanced textbook, and there’s just a
nonstop barrage of material. Three- quarters of the way through
the class, I noticed this student named Timothy Fellows was
getting 90 to 95 percent of the points on all the class activities—
exams, papers, short- answer questions, multiple- choice ques-
tions. Those were just extraordinary grades. Students this
good— well he’s defi nitely an outlier. And so I just took him
aside one day and said, ‘Could you tell me about your study
habits?’ ”2
The year was 2005. Madigan did not know Fellows out-
side class but saw him around campus and at football games
enough to observe that he had a life beyond his academics.
“Psychology wasn’t his major, but it was a subject he cared
about, and he just brought all his skills to bear.” Madigan still
has the list of study habit Fellows outlined, and he shares it
with incoming students to this day.
Among the highlights were these:
• Always does the reading prior to a lecture
• Anticipates test questions and their answers as he reads
• Answers rhetorical questions in his head during
lectures to test his retention of the reading
• Reviews study guides, fi nds terms he can’t recall or
doesn’t know, and relearns those terms
• Copies bolded terms and their defi nitions into a reading
notebook, making sure that he understands them
• Takes the practice test that is provided online by his
professor; from this he discovers which concepts he
doesn’t know and makes a point to learn them
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 217
• Reorganizes the course information into a study guide
of his design
• Writes out concepts that are detailed or important,
posts them above his bed, and tests himself on them
from time to time
• Spaces out his review and practice over the duration of
the course
Fellows’s study habits are a good example of doing what works
and keeping at it, so that practice is spaced and the learning is
solidly embedded come exam time.
Tips for Lifelong Learners
The learning strategies we have just outlined for students are
effective for anyone at any age. But they are centered around
classroom instruction. Lifelong learners are using the same
principles in a variety of less- structured settings.
In a sense, of course, we’re all lifelong learners. From the
moment we’re born we start learning about the world around
us through experimentation, trial and error, and random en-
counters with challenges that require us to recall what we did
the last time we found ourselves in a similar circumstance. In
other words, the techniques of generation, spaced practice and
the like that we present in this book are organic (even if coun-
terintuitive), and it’s not surprising that many people have al-
ready discovered their power in the pursuit of interests and ca-
reers that require continuous learning.
Retrieval Practice
Nathaniel Fuller is a professional actor with the Guthrie
Theater in Minneapolis. We took an interest in him after a
dinner party where the Guthrie’s renowned artistic director,
Joe Dowling, on hearing of our work, immediately suggested
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 218
we interview Fuller. It seems that Fuller has the capacity to so
fully learn the lines and movements of a role for which he is
understudy that he can go onstage at the last moment with
great success, despite not having had the benefi t of learning
and rehearsing it in the normal way.
Fuller is a consummate professional of the stage, having
refi ned his techniques for learning roles over many years. He
is often cast in a leading role; at other times, he may play sev-
eral lesser characters in a play while also understudying the
lead. How does he do it?
When he starts with a new script, Fuller puts it into a
binder, goes through it, and highlights all of his lines. “I fi g-
ure out how much I’ve got to learn. I try to estimate how
much I can learn in a day, and then I try to start early enough
to get that learned.”3 Highlighting his lines also makes them
easy to fi nd and gives him a sense of the construction, so this
use of highlighting is rather different from what students do
in class when they highlight merely for purposes of reread-
ing. “You get the shape of the line, and how the back- and-
forth works.”
Fuller uses retrieval practice in various forms. First, he takes
a blank sheet of paper and covers a page of the script. He
draws it down, silently rendering the lines of the characters
he’s playing opposite, because those lines cue his own, and the
emotion in them is refl ected one way or another by his own
character. He keeps his own line covered and attempts to
speak it aloud from memory. He checks his accuracy. If he
gets the line wrong, he covers it up and speaks it again. When
he has spoken it correctly, he reveals the next passage and
goes on.
“Half of knowing your part is not just what to say, but
knowing when to say it. I don’t have an exceptional brain for
memorizing, but one of the keys I’ve found is, I need to try my
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 219
best to say the line without looking at it. I need to have that
struggle in order to make myself remember it.
“I’ll work like crazy. When I get to where it feels like di-
minishing returns, I’ll quit. Then I’ll come back the next day,
and I won’t remember it. That’s where a lot of my friends will
panic. I just have faith now that it’s in there, it’s going to come
back a little bit better the next time. Then I’ll work on a new
chunk, until I get to the end of the play.”
As he progresses through the script, he’s constantly moving
from familiar pages and scenes into newer material, the play
taking shape like threads added to a growing tapestry, each
scene given meaning by those that came before and extend-
ing the story in turn. When he reaches the end, he practices
in reverse order, moving from the less familiar last scene to
practice the more familiar one that precedes it and then con-
tinuing on through the last scene again. Then he goes to the
part preceding both of those scenes and practices through to
the end. His practice continues reaching back in this way
until he has come to the beginning of the play. This working
backward and forward helps him stitch less familiar mate-
rial to more familiar, deepening his mastery of the role as a
whole.
Learning lines is visual ( just as they are laid out in the
script), but, he says, it’s also “an act of the body, an act of the
muscles, so I’m trying to say the lines in character, get how it
feels.” Fuller examines the language of the script, the tex-
tures of the words, and the fi gures of speech for how they
reveal meaning. He works to discover the way the character
carries himself, the way he moves across the stage, his facial
expressions— all facets that reveal the underlying emotions that
drive each scene. These forms of elaboration help him develop
an emotional approach to the role and a deeper connection to
the character.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 220
He also notches up his retrieval practice. In place of the
written script, he now speaks every line of the other actors in
the play into a palm- sized digital recorder, voiced “in charac-
ter” as best he can discern it. He tucks the recorder in his
hand. His thumb knows where to fi nd the controls. The thumb
presses “play,” and Fuller hears the characters’ lines, then his
cue; the thumb hits “pause,” and he speaks his line from mem-
ory. If in doubt about his accuracy, he checks the script, re-
plays the passage if need be, speaks his lines, and then goes on
with the scene.
When he’s understudying a role, before the director and
cast have worked out the blocking (how the players move in
relation to one another and the set), Fuller practices at home,
imagining his living room as the stage and the way the block-
ing might be laid out. There, as he goes through scenes with
his recorder, hearing others’ lines and speaking his own, he is
moving through the imagined scene, adding physicality to the
part, reacting to imaginary props. When the actor he’s under-
studying is in rehearsal, Fuller observes from behind the the-
ater seats at the back of the hall, walking through the block-
ing himself as the actors rehearse on stage. He continues to
practice later at home, adapting the imaginary stage within
his living room to the now- established blocking.
Fuller’s learning pro cess is a seamless blend of desirable
diffi culties: retrieval practice, spacing, interleaving, generation
(of his character’s soul, carriage, motivations, and idiosyncra-
sies), and elaboration. Through these techniques, he learns the
role and the many levels of meaning that make a per for mance
come alive to himself and to his audience.
Generation
In 2013, John McPhee published a piece in the New Yorker
about writer’s block. Age eighty- two at the time, McPhee of-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 221
fered his remarks from the vantage of a high perch, atop an
illustrious career that has earned him many awards and ac-
know ledg ment as a pioneer of the craft of creative nonfi ction.
Writer’s block is the seemingly insurmountable barrier one must
somehow clamber over if he is to have any hope of engaging
his subject. Writing, like any art form, is an iterative pro cess
of creation and discovery. Many would- be writers fail to fi nd
their voices for the simple fact that, until they are clear about
what they want to say, they cannot bring themselves to dive
in. McPhee’s solution to this problem? He writes a letter to
his mother. He tells her how miserable he feels, what hopes
he’d had for the subject about which he wants to write (a
bear), but that he has no idea how to go about it and, really, it
seems that he’s not cut out to be a writer after all. He would
like to put across the sheer size of the bear, and how utterly
lazy it is, preferring to sleep fi fteen hours a day, and so on.
“And then you go back and delete the ‘Dear Mother’ and all
the whimpering and whining, and just keep the bear.”
McPhee’s fi rst draft is an “awful blurting.” “Then you put
the thing aside. You get in the car and drive home. On the
way, your mind is still knitting at the words. You think of a
better way to say something, a good phrase to correct a cer-
tain problem. Without the drafted version— if it did not exist—
you obviously would not be thinking of ways to improve it.
In short, you may actually be writing only two or three hours
a day, but your mind, in one way or another, is working on it
twenty- four hours a day— yes, while you sleep— but only if
some sort of draft or earlier version exists. Until it exists,
writing has not really begun.”4
This is the crux: Learning works the same way as McPhee’s
“awful blurting.” Your grasp of unfamiliar material often starts
out feeling clumsy and approximate. But once you engage the
mind in trying to make sense of something new, the mind be-
gins to “knit” at the problem on its own. You don’t engage the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 222
mind by reading a text over and over again or by passively
watching PowerPoint slides. You engage it by making the ef-
fort to explain the material yourself, in your own words—
connecting the facts, making it vivid, relating it to what you
already know. Learning, like writing, is an act of engagement.
Struggling with the puzzle stirs your creative juices, sets the
mind to looking for parallels and meta phors from elsewhere
in your experience, knowledge that can be transferred and ap-
plied here. It makes you hungry for the solution. And the so-
lution, when you arrive at it, becomes more deeply embedded
with your prior knowledge and abilities than anything pasted
onto the surface of your brain by PowerPoint.
So take a page from McPhee: when you want to master
something new, delete the whimpering and go wrestle the bear.
Refl ection
In Chapter 2 we tell how the Mayo Clinic neurosurgeon Mike
Ebersold uses the habit of refl ection to improve his skills in
the operating room. Refl ection involves retrieval (What did I
do? How did it work?) and generation (How could I do it bet-
ter next time?), invoking imagery and mental rehearsal as well
(What if I take a smaller bite with the needle?). It was this habit
of refl ection that brought him to devise a surgical solution for
the repair of a delicate sinus structure in the back of the skull
that cannot be tied off because the structure is somewhat fl at
and tears when you snug the suture.
Vince Dooley, Georgia Bulldogs football coach (Chapter 3),
helped his players use refl ection and mental rehearsal to learn
their playbooks and their adjustments for next Saturday’s
game. The Minneapolis cop David Garman (Chapter 5) uses
refl ection to improve his undercover strategies. The power of
refl ection as a learning technique is apparent throughout the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 223
personal memoir Highest Duty, by Captain Chesley Sullen-
berger. “Sully” is the pi lot who successfully and miraculously
ditched US Airways Flight 1549 on the Hudson River in
2009. Time and again, in reading his autobiography, we see
how he refi ned his understanding of fl ight and the control of
his aircraft through training, personal experience, and the close
observation of others. The pro cess started from his earliest
days at the stick of a single- engine crop duster, continued to his
jet fi ghter days, his time investigating commercial airline disas-
ters, and his granular analysis of the few available examples of
the ditching of commercial aircraft, where he paid par tic u lar
attention to the lessons for pitch, speed, and level wings. The
evolution of Captain Sullenberger shows us that the habit of
refl ection is more than simply taking stock of a personal ex-
perience or the observed experiences of others. At its most
powerful this habit involves engagement of the mind through
generation, visualization, and mental rehearsal.
Elaboration
When we met the pianist Thelma Hunter, she was learning four
new works for an upcoming concert per for mance: pieces by
Mozart, Faure, Rachmaninoff, and William Bolcom. Hunter,
who is eighty- eight, won her fi rst prize as a pianist at age fi ve in
New York and has been performing ever since. She is not a
prodigy, she insists, nor even particularly renowned, but she is
accomplished. In addition to a busy life raising six kids with
her husband, Sam, a heart surgeon, Hunter has enjoyed a long
life of learning, teaching, and performing at the piano, and she
is still in the game, sought after and bent to her life’s plea sure at
the keyboard.
Giving new learning multiple layers of meaning has been
central to Hunter’s methods and illustrates the way elaboration
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 224
strengthens learning and memory. When she studies a new
score, she learns it physically in the fi ngering, aurally in the
sound, visually in the notes on the score, and intellectually in
the way she coaches herself through transitions.
Hunter has made some concessions to age. She never used
to warm up before playing, but now she does. “My stamina
is not as great as it used to be. My reach is not as big. Now,
if I memorize something, I have to think about it. I never
used to have to do that, I just worked through all the aspects
of it and the memorizing came.”5 She visualizes the score
and makes mental marginalia. “When I’m practicing, some-
times I say it out loud, ‘Up an octave, at this point,’ but in
my mind’s eye I visualize the place on the sheet music, as
well.” In comments that resonate with John McPhee’s obser-
vations about writing, Hunter says that at the point where a
piece is almost memorized, “I’ll be driving, and I can think
about the whole piece, which I do. The shape of it, as though
I were a conductor, thinking, ‘Oh, that passage makes more
sense if I speed it up. I have to practice that to get it faster.’
Those are the large things that I can think about away from
the piano.”
Hunter’s practice regimen is daily, working through new
pieces, slowing down to parse the diffi cult passages, and then,
because she now often performs with a cellist and violinist,
the ensemble works through the pieces together to synchro-
nize their individual interpretations.
In Chapter 7 we describe Anders Ericsson’s research into
how experts, through thousands of hours of solo, deliberate
practice, build libraries of mental models that they can deploy
to address a wide universe of situations they encounter in their
area of expertise. Hunter describes experiences that would
seem to manifest Ericsson’s theory. At times she must sit at the
keyboard and devise a fi ngering plan for playing a diffi cult pas-
sage. Oddly, she says, after having been away from the piece
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 225
for a week, she will sit down and play it through, using a fi n-
gering pattern that she had not planned but feels entirely
natural to her and familiar. It’s a paradox, though perhaps not
entirely surprising. She credits her subconscious, drawing
from her long years of playing, with fi nding a more fl uent so-
lution than what she has devised by puzzling it out at the
keyboard. But perhaps it has been the effort at the keys, like
McPhee wrestling his bear, that has set her mind to sorting
through the closets of her memory for something a little more
elegant and natural to fi t the occasion.
Tips for Teachers
Here again we are leery of being too prescriptive. Every teacher
must fi nd what’s right in his or her classroom. Yet specifi cs
can be helpful. So here are some basic strategies that in our
judgment will go a long way toward helping students become
stronger learners in the classroom. Brief descriptions follow
of what some teachers are already doing along these lines.
Between the recommendations and the examples, we hope you
will fi nd practical ideas you can adapt and put to work.
Explain to Students How Learning Works
Students labor under many myths and illusions about learn-
ing that cause them to make some unfortunate choices about
intellectual risk taking and about when and how to study. It’s
the proper role of the teacher to explain what empirical stud-
ies have discovered about how people learn, so the student
can better manage his or her own education.
In par tic u lar, students must be helped to understand such
fundamental ideas as these:
• Some kinds of diffi culties during learning help to make
the learning stronger and better remembered.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 226
• When learning is easy, it is often superfi cial and soon
forgotten.
• Not all of our intellectual abilities are hardwired. In
fact, when learning is effortful, it changes the brain,
making new connections and increasing intellectual
ability.
• You learn better when you wrestle with new problems
before being shown the solution, rather than the other
way around.
• To achieve excellence in any sphere, you must strive to
surpass your current level of ability.
• Striving, by its nature, often results in setbacks, and
setbacks are often what provide the essential informa-
tion needed to adjust strategies to achieve mastery.
These topics, woven throughout the book, are discussed in
depth in Chapters 4 and 7.
Teach Students How to Study
Students generally are not taught how to study, and when they
are, they often get the wrong advice. As a result, they gravitate
to activities that are far from optimal, like rereading, massed
practice, and cramming.
At the beginning of this chapter we present effective
study strategies. Students will benefi t from teachers who
help them understand these strategies and stick with them
long enough to experience their benefi ts, which may initially
appear doubtful.
Create Desirable Diffi culties in the Classroom
Where practical, use frequent quizzing to help students con-
solidate learning and interrupt the pro cess of forgetting. Make
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 227
the ground rules acceptable to your students and yourself.
Students fi nd quizzing more acceptable when it is predictable
and the stakes for any individual quiz are low. Teachers fi nd
quizzing more acceptable when it is simple, quick, and does
not lead to negotiating makeup quizzes. (For one example,
consider the way Kathleen McDermott, whose work we de-
scribe below, uses daily quizzing in her university class on
human learning and memory.)
Create study tools that incorporate retrieval practice, gen-
eration, and elaboration. These might be exercises that require
students to wrestle with trying to solve a new kind of problem
before coming to the class where the solution is taught; prac-
tice tests that students can download and use to review mate-
rial and to calibrate their judgments of what they know and
don’t know; writing exercises that require students to refl ect
on past lesson material and relate it to other knowledge or
other aspects of their lives; exercises that require students to
generate short statements that summarize the key ideas of re-
cent material covered in a text or lecture.
Make quizzing and practice exercises count toward the
course grade, even if for very low stakes. Students in classes
where practice exercises carry consequences for the course
grade learn better than those in classes where the exercises are
the same but carry no consequences.
Design quizzing and exercises to reach back to concepts
and learning covered earlier in the term, so that retrieval
practice continues and the learning is cumulative, helping
students to construct more complex mental models, strengthen
conceptual learning, and develop deeper understanding of
the relationships between ideas or systems. (For an exam-
ple, read in Chapter 2 how Andy Sobel uses cumulative low-
stakes quizzing in his university- level course in po liti cal
economics.)
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 228
Space, interleave, and vary topics and problems covered in
class so that students are frequently shifting gears as they have
to “reload” what they already know about each topic in order
to fi gure out how the new material relates or differs.
Be Transparent
Help your students understand the ways you have incorpo-
rated desirable diffi culties into your lessons, and why. Be up
front about some of the frustrations and diffi culties this kind
of learning entails and explain why it’s worth persisting. Con-
sider having them read the profi le earlier in this chapter of the
medical student Michael Young, who vividly describes the dif-
fi culties and ultimate benefi ts of using these strategies.
Mary Pat Wenderoth, Biology Professor,
University of Washington
Mary Pat Wenderoth introduces desirable diffi culties in her
classes to help students master their coursework. She also
works at helping students learn how to be effective at manag-
ing their own learning— to be the capable student within the
professional that they envision becoming. Along that path she
tackles yet another challenge, helping students learn to judge
where their grasp of course material stands on Bloom’s tax-
onomy of learning, and how to rise to the levels of synthesis
and evaluation.
Bloom’s taxonomy classifi es cognitive learning on six lev-
els. It was developed in 1956 by a committee of educators
chaired by psychologist Benjamin Bloom. The six levels range
from gaining knowledge (the most fundamental level) to de-
veloping comprehension of the underlying facts and ideas,
being able to apply learning to solve problems, being able to
analyze ideas and relationships so as to make inferences, be-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 229
ing able to synthesize knowledge and ideas in new ways, and,
at the most sophisticated level, being able to use learning to
evaluate opinions and ideas and make judgments based on
evidence and objective criteria.
Here are some of the main techniques Wenderoth uses.
Transparency. At the outset, Wenderoth teaches her students
about the testing effect, the principle of desirable diffi culties,
and the perils of “illusions of knowing.” She promises to make
her instructional philosophy transparent and to model these
principles in class. As she explained to us recently, “The whole
idea of the testing effect is that you learn more by testing your-
self than by rereading. Well, it’s very hard to get students to do
that because they’ve been trained for so long to keep reading
and reading the book.”6
I can’t tell you how many times the students come to me and
they show me their textbook and it’s highlighted in four dif-
ferent colors. I say to them, “I can tell you have done a lot of
work and that you really want to succeed in this class because
you have blue and yellow and orange and green highlighter
on your book.” And then I have to try to tell them that any
more time spent on this after the fi rst time was a waste. They’re,
like, “How is that possible?” I say, “What you have to do is,
you read a little bit and then you have to test yourself,” but they
don’t quite know how to do that.
So I model it in class for them. Every fi ve minutes or so I
throw out a question on the material we just talked about,
and I can see them start to look through their notes. I say,
“Stop. Do not look at your notes. Just take a minute to think
about it yourself.” I tell them our brains are like a forest, and
your memory is in there somewhere. You’re here, and the mem-
ory is over there. The more times you make a path to that
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 230
memory, the better the path is, so that the next time you need the
memory, it’s going to be easier to fi nd it. But as soon as you get
your notes out, you have short- circuited the path. You are not
exploring for the path anymore, someone has told you the way.
At other times, Wenderoth will pose a question to the class
and ask them to think about it. She has students write three
possible answers on the whiteboard up front and then vote on
which answer they think is correct by raising the number of
fi ngers that corresponds with the answer on the board. She’ll
instruct students to fi nd somebody with fi ngers “different from
yours and talk to them and fi gure out who has the correct
answer.”
Wenderoth gives her students a new way to think about
learning, and she gives them a new vocabulary for describing
setbacks. When students trip over an exam question, they’ll
commonly accuse the test of containing trick questions. When
the student blames the test, she says, it’s not a good meeting
ground for solving the problem. But now, students come to
see her after a disappointing exam and say, “I have the illu-
sion of knowing. How do I get better?” That’s a problem Wen-
deroth can help with.
Testing groups. Wenderoth has transformed class “study
groups” into “testing groups.” In a study group, the person
who knows the most talks and the others listen. The emphasis
is on memorizing things. However, in a testing group, they all
wrestle with a question together, without opening the text-
book. “Everybody has bits of information, and you talk with
your colleagues and fi gure it out.” The emphasis is on explo-
ration and understanding.
Wenderoth will ask students in a testing group what ideas
they don’t feel really clear on. Then she’ll send one student to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 231
the whiteboard to try to explain the concept. As the student
struggles, perhaps putting up the pieces of the answer she
knows, the rest of the group are instructed to test her by ask-
ing questions whose answers will lead her to the larger con-
cept. Throughout, all textbooks remain closed.
Free recall. Wenderoth assigns her students to spend ten
minutes at the end of each day sitting with a blank piece of
paper on which to write everything they can remember from
class. They must sit for ten minutes. She warns that it will be
uncomfortable, they will run out of ideas after two minutes,
but they must stick it out. At the end of ten minutes, they’re
to go to their class notes and fi nd out what they remembered
and what they forgot, and to focus on the material they for-
got. What they glean from this exercise guides their notes
and questions for the next class. Wenderoth fi nds that the
free recall exercise helps students pull learning forward and
develop a more complex understanding of how the material
interrelates.
Summary sheets. Every Monday, Wenderoth’s students are
required to turn in a single sheet of certain dimensions on
which they have illustrated the prior week’s material in
drawings annotated with key ideas, arrows, and graphs.
She’s teaching physiology, which is about how things work,
so the summaries take on the form of large cartoons dense
with callouts, blowups, directional arrows, and the like. The
sheets help her students synthesize a week’s information,
thinking through how systems are connected: “This is caus-
ing this, which causes this, which feeds back on those. We
use a lot of arrows in physiology. The students can work
with each other, I don’t care. The sheet they bring in just has
to be their own.”
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 232
Learning paragraphs. From time to time, on a Friday, if she
doesn’t feel she’s overburdening them, Wenderoth will assign
students to write low- stakes “learning paragraphs” for which
she poses a question and asks students to prepare a fi ve- or
six- sentence response. A question might be “How is the GI
tract like the respiratory system?” Or “You just got your tests
back; what would you do differently next time?” The point is
to stimulate retrieval and refl ection and to capture a week’s
learning before it is lost to the countless other concerns and
diversions of college life. “What I found over the years is, if I
don’t do anything before the test, they don’t do anything until
the day before the test.” The learning paragraphs also give her
science majors practice in writing a passage of clear prose. She
reads through the responses and makes a point to comment
on them in class so that students know they’re being read.
Bloom’s taxonomy of learning. To remove some of the ab-
straction from Bloom’s taxonomy, Wenderoth has translated
her class material into the different levels of the taxonomy on
an answer key to her tests. That is, for any given question, she
provides a different answer for each level of the taxonomy:
one that refl ects learning at the level of knowledge, a more
thorough answer that refl ects understanding, a yet more com-
plex answer that refl ects analysis, and so on. When students
get their tests back, they also receive the answer key and are
asked to identify where their answers fell on the taxonomy
and to think about what they need to know in order to re-
spond at a higher level of learning.
Closing the achievement gap in the sciences. Wenderoth and
her colleagues have experimented with class structure and the
principles of active learning to help close the achievement gap
in the sciences. Poorly prepared students seldom survive entry-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 233
level science courses. As a result, even students whose inter-
ests and aptitudes might lead them to successful science ca-
reers never get through the door. For what ever reason, these
students do not have a history from high school or family life
of learning how to succeed in these highly challenging aca-
demic settings.
“For most of us who have found our way in the sciences,”
Wenderoth says, “any time we fell, there was somebody around
to help us up, or to say, ‘This is how you get up.’ You were
taught that when things don’t go well, you keep working any-
way. You persevere.”
In their experiments, Wenderoth and her colleagues have
compared the results of “low- structure” classes (traditional
lecturing and high- stakes midterm and fi nal exams) with “high-
structure” classes (daily and weekly low- stakes exercises to pro-
vide constant practice in the analytical skills necessary to do
well on exams). They also teach students the importance of
having a “growth mindset” (see the work of Carol Dweck,
discussed in Chapter 7)— that is, that learning is hard work
and that struggle increases intellectual abilities.
The results? High- structure classes in a gateway biology
course signifi cantly reduced student failure rates compared to
low- structure classes— narrowing the gap between poorly pre-
pared students and their better prepared peers while at the
same time showing exam results at higher levels on Bloom’s
taxonomy. Moreover, it’s not just whether the student com-
pletes the practice exercises that matters. In the classes where
exercises count toward the course grade, even at very low
stakes, students achieve higher success over the course of the
term compared to students in classes where the exercises are
the same but carry no consequences for the grade.
“We talk to the students about how these are the habits of
mind,” Wenderoth says. “This is the discipline that you have to
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 234
have in order to succeed in the sciences. They’ve never thought
about that, that every discipline has a culture. We teach them
to think like the professionals they want to become. And when
they fall, we show them how to get up again.”7
Michael D. Matthews, Psychology Professor,
U.S. Military Academy at West Point
The pedagogical philosophy at West Point is founded on an
instructional system called the Thayer method, developed al-
most two hundred years ago by an early superintendent of the
academy named Sylvanus Thayer. The method provides very
specifi c learning objectives for every course, puts the responsi-
bility for meeting those objectives on the student, and incor-
porates quizzing and recitation in every class meeting.
Students’ grades at the academy rest on three pillars of
training: academic, military, and physical. Mike Matthews, a
professor of engineering psychology at the academy, says the
load on students is enormous, greater than the hours avail-
able to them. In order to survive at the academy, West Point
cadets must develop an ability to zero in on what’s essential
and let the rest fall by the wayside. “This is about having very
high expectations across multiple dimensions and keeping
them real busy,” Matthews, says. In fact, as stunning as it
sounds, Matthews will tell a student, “If you’ve read every word
of this chapter, you’re not being very effi cient.” The point is not
to “slide your eyes over the words.” You start with questions,
and you read for answers.8
There’s little or no lecturing in Matthews’s courses. Class
opens with a quiz on the learning objectives from the assigned
reading. From there, on many days, students “take to the
boards.” The classrooms have slate on all four walls, and a
group of students are sent to each blackboard to collaborate
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 235
on answering a question given by the professor. These are
higher- order questions than are given in the daily quiz, requir-
ing the students to integrate ideas from the reading and apply
them at a conceptual level. It’s a form of retrieval practice,
generation, and peer instruction. One student is selected from
each group to give a recitation to the class explaining how the
group has answered the question, and then the group’s work
is critiqued. All class meetings focus on constructs, not spe-
cifi c facts, and on the days the students do not take to the
boards, they are engaged in other forms of exercise, demon-
stration, or group work aimed at understanding and articulat-
ing the larger concepts underlying the matter at hand.
Clear learning objectives prior to each class, coupled with
daily quizzing and active problem solving with feedback, keep
students focused, awake, and working hard.
One of the most important skills taught at West Point is
something learned outside the classroom: how to shoot an
azimuth. It’s a skill used for keeping your bearings in unfamil-
iar territory. You climb a tree or a height of land and sight a
distant landmark in the direction you’re headed. Compass in
hand, you note how many degrees your landmark lies off of
due north. Then you descend into the bush and keep working
your way in that direction. Periodically, you pause to shoot an
azimuth and make sure you’re on course. Quizzing is a way of
shooting an azimuth in the classroom: are you gaining the
mastery you need to get where you’re trying to go?
Matthews has had the privilege of seeing two of his stu-
dents win Rhodes Scholarships. The most recent was Cadet
Kiley Hunkler (now Second Lieutenant Hunkler). Hunkler will
be spending the next two years at Oxford University, and then
matriculating at Johns Hopkins Medical School. It was Hunkler
who spoke to us of shooting an azimuth. “Everything at the
academy is about self- responsibility, taking own ership for
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 236
fi nding your own way to the objective,” she said.9 The Medical
College Admission Test, for example, encompasses four major
course blocks: reading, chemistry, physiology, and writing. For
each of these blocks, Hunkler created the learning objectives in
her head that she deemed most important and then set out to
answer them as she studied. “I took a practice test every three
days, saw what I got wrong, and adjusted.” Shooting her azi-
muth. “A lot of students get hung up studying for months, try-
ing to memorize everything, but for me it was more about un-
derstanding the concepts. So my azimuth check would be, Okay,
what is this question asking, what’s the broader theme here, and
does that match up with what I’ve outlined for this section.”
One of this book’s authors (Roediger) attended Riverside
Military Academy in Gainesville, Georgia, for high school.
Riverside used a form of the Thayer method, with students
having daily quizzes, problem sets, or assignments to be com-
pleted in class. The range of ability of these younger cadets
was much more varied than at the elite US Military Academy
at West Point, but the Thayer method worked well. In fact,
such methods that include daily participation are especially
likely to help students who are not prone to work hard on
their own outside of class. The Thayer method is a strong en-
couragement for them to keep at it, and echoes what Mary
Pat Wenderoth (above) has found in her empirical studies:
that high- structure classes help students who lack a history of
using effective learning techniques and habits to develop them
and succeed in rigorous settings.
Kathleen McDermott, Psychology Professor,
Washington University at St. Louis
Kathleen McDermott administers daily low- stakes quizzes in
a university course on human learning and memory. It’s a class
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 237
of twenty- fi ve students that meets twice a week for fourteen
weeks, minus midterms and a fi nal exam. She gives a four-
item quiz in the last three to fi ve minutes of every class. The
questions hit the high points of the lecture, the readings, or
both. If students have understood the material, they will get
all four answers right, but they’ll have to think in order to do
it. Anything covered in the course to date is fair game for a
quiz, and she will sometimes draw from past material that she
feels the students haven’t fully grasped and need to review.
McDermott sets the ground rules very clearly at the start of
the term. She lays out the research on learning and the testing
effect and explains why the quizzes are helpful, even if they
don’t feel helpful. Students are allowed to drop four quizzes
across the semester. In exchange, absences need not be justi-
fi ed, and no missed quizzes will be made up.
Students initially are not happy about the quiz regime, and
in the fi rst few weeks of the term McDermott will get email
from students explaining why they had a legitimate excuse for
an absence and should be allowed to make up a missed quiz.
She reiterates the terms: four free absences, no makeups.
McDermott says the quizzes provide an incentive for stu-
dents to attend class and give students a way to contribute to
their grade on a daily basis if they answer four out of four
questions correctly. By the end of the semester, her students say
that the quizzes have helped them keep up with the course and
discover when they are getting off track and need to bone up.
“The key with quizzes is to establish very clear ground rules
for the student, and make them manageable for the profes-
sor,” McDermott says. “As a student, you’re either there and
you take it, or you’re not. For the professor, no hassling over
makeup tests.”10
The quizzes in totality count for 20 percent of a student’s
grade in the course. In addition, McDermott gives two
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 238
midterm exams and a fi nal. The last two exams are cumula-
tive. Having cumulative exams reinforces learning by requir-
ing students to engage in spaced review.
Columbia, Illinois, Public School District
As recounted in Chapter 2, we have worked with teachers in
a middle school in Columbia, Illinois, to test the effects of in-
tegrating low- stakes quizzing into the curriculum. Regular
quizzing and other forms of retrieval practice have been ad-
opted by teachers in the school who were a part of the re-
search study and by others who were not but who observed
the benefi cial results. The initial research project has since been
extended into history and science classes in the district’s high
school, where frequent retrieval practice is being used both to
bolster learning and to help teachers focus instruction on ar-
eas where student understanding and per for mance need to be
improved.
The Illinois State Board of Education has adopted new math
and En glish language arts standards for K– 12 education in
line with the Common Core State Standards Initiative led by
the National Governors Association and endorsed by the na-
tion’s secretary of education. Common Core establishes stan-
dards for college and career readiness that students should be
able to meet on graduation from high school. The Columbia
School District, like others, is redesigning its curriculum and
its tests to be more rigorous and to engage students in more
writing and analysis work, with the aim of promoting the
higher- level skills of conceptual understanding, reasoning, and
problem solving that will enable students to meet the standards
established by the state. As one example of this overhaul, the
sciences curriculum is being vertically aligned so that students
are reexposed to a subject at various stages of their school
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 239
careers. The result is more spaced and interleaved instruction.
In physical sciences, for instance, middle school students may
learn to identify the six basic machines (inclined plane, wedge,
screw, lever, wheel and axle, and pulley) and how they work,
and then may return to these concepts in subsequent grades,
delving into the underlying physics and how these basic tools
can be combined and applied to solve different problems.
Tips for Trainers
Here are some ways trainers are using the same principles as
those who teach in schools, in a variety of less structured and
nonclassroom settings.
In- Service Training
Licensed professionals in many fi elds must earn continuing
education credits to keep their skills current and maintain their
licenses. As the pediatric neurologist Doug Larsen describes in
Chapter 3, this kind of training for doctors is typically com-
pressed into a weekend symposium, out of respect for partici-
pants’ busy schedules, set at a hotel or resort, and structured
around meals and PowerPoint lectures. In other words, the
strategies of retrieval practice, spacing, and interleaving are
nowhere to be seen. Participants are lucky to retain much of
what they learn.
If you see yourself in this scenario, there are a few things
you might consider doing. One, get a copy of the pre sen ta tion
materials and use them to quiz yourself on the key ideas, much
as Nathaniel Fuller quizzes himself on the arc of a play, his
lines, the many layers of character. Two, schedule follow- up
emails to appear in your inbox every month or so with ques-
tions that require you to retrieve the critical learning you gained
from the seminar. Three, contact your professional association
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 240
and ask them to consider revamping their approach to train-
ing along the lines outlined in this book.
The testing effect forms the basis of a new commercial
training platform called Qstream that helps trainers send
learners periodic quizzes via their mobile devices to strengthen
learning through spaced retrieval practice. Similarly, an emerg-
ing platform called Osmosis uses mobile and Web based soft-
ware to provide learners access to thousands of crowdsourced
practice questions and explanations. Osmosis combines the
testing effect, spacing, and social networking to facilitate what
its developers call “student- driven social learning.” Qstream
(qstream.com) and Osmosis (osmose- it.com) suggest inter-
esting possibilities for redesigning in- service training for
professionals. Many other companies are developing similar
programs.
Kathy Maixner, Business Coach
The Maixner Group is a consulting shop based in Portland,
Oregon, that helps companies identify growth strategies and
improve their sales tactics. Kathy Maixner fries big fi sh and
little. One of the big fi sh added $21 million to its annual rev-
enue as a result of hooking up with Maixner. One of the small
ones, Inner Gate Acu punc ture (profi led at the close of this
chapter), learned how to establish a solid business management
footing under a clinical practice whose growth was outpacing
its control systems.
We’re interested in Maixner because the coaching tech-
niques she has developed over her career line up so well with
the learning principles described in this book. In short, Maixner
sees her role as helping the client dig past the symptoms of a
problem to discover its root causes, and then to generate pos-
sible solutions and play out the implications of different strat-
egies before committing to them.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 241
Maixner told us: “If you hand people the solution, they
don’t need to explore how you got to that solution. If they
generate the solution, then they’re the ones who are traveling
down that road. Should they go left or right? We discuss the
options.”11
Maixner’s years of experience working with clients in
many different fi elds helps her see around corners, where the
hazards lie. She often uses role- playing to simulate prob-
lems, getting her clients to generate solutions, try them out,
get feedback, and practice what works. In other words, she
introduces the diffi culties that make the learning stronger and
more accurately refl ect what the client will encounter out in
the marketplace.
Farmers Insurance
Corporate sales training can be complicated. Typically, it’s
about corporate culture, beliefs and behavior, and learning to
promote and protect the brand. It’s also technical, learning the
features and advantages of the products. And it’s partly strate-
gic, learning about the target market and how to generate pros-
pects and make sales. At Farmers Insurance, whose principal
sales force is a cadre of about fourteen thousand exclusive in-
de pen dent agents, training must also equip the company’s reps
to become successful as entrepreneurs, building and managing
their own agency.
Farmers sells property and casualty policies and investment
products like annuities and mutual funds to the tune of about
$20 billion a year. Describing the full scope of their training
could fi ll volumes, but we’ll focus on the way Farmers brings
new agents on board, training them in the four areas of sales,
marketing systems, business planning, and advocacy of the
brand. The company’s new-agent training is an excellent ex-
ample of interleaving the learning and practice of different
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 242
but related topics so that each adds meaning to the other,
broadening and deepening competency.
The company recruits upward of two thousand new agents
annually. Many leave traditional jobs elsewhere, drawn to the
rewards of running their own business and the opportunity
to represent an established product line. Newly appointed
agents arrive at one of two training campuses for an intensive
weeklong program of learning exercises that spiral upward in
sophistication.
At the start, participants are given a pile of magazines, scis-
sors, and marking pens with which to illustrate on poster-
board what being a successful Farmers agent would look like
to them personally, fi ve years down the road. For some, the
poster shows fancy houses and cars. For others, kids are being
sent to college and aging parents are being cared for. The point
is simple: if your defi nition of success requires, say, $250,000
a year in revenues and twenty- fi ve hundred policies in force,
we can help you work backward to set the metrics for where
you need to be in four years, in three years, and even three
months from now. The image on the poster shows where you’re
headed, the metrics are your road map, and the skills that are
learned over the coming days and months are the tools that
will enable you to make the journey.
From here, the week is not so much about teaching from
the top down— there are no PowerPoint lectures as such— but
about learning from the bottom up, as in: “What knowledge
and skills do I need in order to succeed?”
The learning unfolds through a series of exercises that cy-
cle through the principal topics of sales, marketing systems,
business planning, and advocacy of the company’s values and
its brands— returning time and again to each, requiring that
participants recall what they have learned earlier and apply it
in a new, enlarged context.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 243
For example, when participants fi rst arrive, they’re assigned
to a red, blue, or green group. The red group is instructed to
go meet people in the room. The blue group is instructed to
go learn three things about somebody in the room. The green
group is instructed to ask another member of the class about
his or her family, prior occupation, favorite forms of recre-
ation, and what he or she enjoys most. When the class recon-
venes, they share what they have learned about others, and it
is quickly evident that the green group, which had a structure
for talking to others, learned much more than did their peers.
When talking about sales later in the week the question
comes up, what’s an effective way to learn about a prospec-
tive customer? Somebody will recall the initial get- acquainted
exercise that proved so fruitful: asking about one’s family,
occupation, recreation, and enjoyment. That icebreaker now
morphs into a handy tool for getting to know a prospective
client and it gets an acronym: FORE.
Throughout the week the four principal training topics are
repeatedly touched on, a point is made, and the exercises shift
to related questions. In one session, participants brainstorm
what kinds of marketing and development strategies might
generate the fl ow of leads they need in order to meet sales tar-
gets. An effective sales and marketing system has a structure
called 5- 4- 3- 2- 1. Five new business marketing initiatives ev-
ery month, four cross- marketing and four retention programs
in place, three appointments scheduled every day, two ap-
pointments kept (prospects often have to reschedule), one new
customer sold on average two policies per sale. At twenty- two
working days a month, that’s about fi ve hundred new policies
in a year, making twenty- fi ve hundred over the fi ve- year hori-
zon of the agent’s vision.
Practice is a central learning strategy. For example, they
practice how to respond to a sales lead. Trying to sell the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 244
company’s products is how they learn about selling, but it’s
also how they learn about the products they’re selling— not
by sitting in front of PowerPoint slides gazing at long lists of
product features. You be the agent, I’ll be the customer. Then
we’ll switch.
Interwoven with these exercises are others that help the
new agents learn about the company’s history, what it stands
for, and the value of its products in people’s lives, for instance
through stories of how it has helped people recover from ca-
tastrophes like Hurricane Katrina.
Given the emphasis on marketing and the limited resources
new agents have to invest, how does an agent determine which
strategies will pay? The question goes out: What’s a reasonable
return to expect from a direct mail campaign? The agents mull
it over and hazard guesses. Usually, one or more of the agents
will have had direct- mail marketing experience and offer the
sobering answer: returns are closer to 1 percent than the 50
percent many had guessed.
Once you turn up a lead, how do you discover needs he or
she has that the company’s products can meet? They return to
the handy acronym FORE. Now, the habit of asking about
one’s family, occupation, recreation, and enjoyment becomes
something even more potent than a tool for getting acquainted.
It provides an opening into four of the most important realms
of a prospect’s life where insurance and fi nancial products can
help that person protect his or her assets and achieve his or
her fi nancial goals. At each pivot from one subject back to
another, understanding deepens, and new skills take form.
In this way, through generation, spaced practice, and inter-
leaving of the essential core curriculum, with an eye always to
the fi ve- year vision and road map, new agents learn what they
need to do, and how, in order to thrive as a part of the Farm-
ers Insurance family.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 245
Jiffy Lube
If you don’t expect innovations in training to spring from your
local ser vice garage, Jiffy Lube may surprise you. An integrated
suite of educational courses under the felicitous name Jiffy
Lube University is helping the company’s franchisees win cus-
tomers, reduce employee turnover, broaden their ser vice offer-
ings, and boost sales.
Jiffy Lube is a network of more than two thousand ser-
vice centers in the United States and Canada that provide oil
changes, tire rotation, and other automotive ser vices. Although
the company is a subsidiary of Shell Oil Company, every out-
let is owned and operated by an in de pen dent franchisee, who
hires employees to serve customers.
The rapid- oil- change business, like most others, has had to
adjust to changes in the marketplace and advances in technol-
ogy. Synthetic lubricants have made oil changes less frequent,
and because cars have become more complicated, garage
employees need higher levels of training to understand diag-
nostic codes and provide appropriate ser vices.
No employee may work on a customer’s car until he or she
has been certifi ed as profi cient. For this, they enter Jiffy Lube
University, a Web- based learning platform. Certifi cation starts
with interactive e-learning, with frequent quizzing and feed-
back to learn what a par tic u lar job entails and how it’s to be
performed. When employees score 80 percent or better on an
exam, they are eligible to begin training on the job, practicing
new skills by following a written guide that breaks each ser-
vice activity into its component steps. The steps may number
as many as thirty and are performed as a part of a team, often
involving call and response (for example, between a techni-
cian working from the top side of an engine and another un-
derneath). A supervisor coaches the employee and rates his or
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 246
her per for mance on each step. When the technician demon-
strates mastery, certifi cation is recorded in his or her perma-
nent fi le, signed by the supervisor. Technicians must recertify
every two years to keep their mastery up to snuff and adapt to
operational and technical changes. Higher- level jobs for ad-
vanced ser vices like brake repair or running engine diagnos-
tics are trained in the same manner.
The e-learning and on- the- job training are active learning
strategies that incorporate various forms of quizzing, feed-
back, and spaced and interleaved practice. All progress is dis-
played by computer on a virtual “dashboard” that provides
an individualized learning plan, enabling an employee to track
his or her per for mance, focus on skills that need to be raised,
and monitor his or her progress against the company’s com-
pletion schedule. Jiffy Lube employees are typically eigh teen
to twenty- fi ve years old and fi lling their fi rst job. As a techni-
cian is certifi ed in one job, he or she begins training in an-
other, until he or she has trained in all store positions, includ-
ing management.
Ken Barber, Jiffy Lube International’s manager of learning
and development, says training has to be engaging in order to
hold employees’ attention. At the time we spoke, Barber was
putting the fi nishing touches on a computer- based simulation
game for company managers called “A Day in the Life of a
Store Manager.” The ser vice center manager is confronted with
various challenges and is required to select among a range of
possible strategies for resolving them. The manager’s choices
determine how the game unfolds, providing feedback and the
opportunity to strive for better outcomes, sharpening decision-
making skill.
In the six years since Jiffy Lube University was launched, it
has received many accolades from the training profession and
earned accreditation by the American Council on Education.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 247
Employees who progress through training in all job certifi ca-
tions can enroll at a postsecondary institution with seven
hours of college credit under their belts. Since the program’s
beginning, employee turnover has dropped and customer sat-
isfaction has increased.
“For most employees of a Jiffy Lube franchisee, this is a
way into the workforce, and the training curriculum helps
them to continue to grow and expand their knowledge,” Bar-
ber says. “It helps them fi nd a path to success.”12
Andersen Windows and Doors
At Andersen Windows and Doors, a culture of continuous
improvement turns learning on its head: the production work-
ers teach the managers how to make the plant more effi cient.
This story is a little different from the others in this chapter
in two respects. It’s partly about creating a learning culture in
the workplace, and partly about empowering employees to
use what they learn to change the workplace. By encouraging
employees to identify problems on the job and propose im-
provements, the company is supporting one of the most pow-
erful learning techniques we have discussed, wrestling to solve
a problem.
A good place to focus is on the company’s division called
Renewal by Andersen, which produces replacement windows
of all types and sizes: double- hung, casement, gliding, picture
windows, and specialty windows in nontraditional shapes.
At Renewal by Andersen’s facility in Cottage Grove, Min-
nesota, their double- hung production line employs thirty- six
people during an eight- hour shift that is divided into three
work cells, one for sash fabrication, another for frame fabrica-
tion, and one for fi nal assembly. Each work cell has four work
stations and is led by a crew leader who is responsible for
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 248
safety, quality, cost, and delivery within that cell. Workers
change jobs every two hours to minimize repetitive stress in-
juries and broaden cross- training. Like interleaving the practice
of two or more different but related topics, frequent switch-
ing between jobs builds an understanding of the integrated
pro cess for which their unit is responsible and equips workers
to respond more broadly to unexpected events that arise.
It probably won’t surprise you to learn that every job is
performed to a written standard that describes each step and
the way it is to be taken. The written standard is essential for
uniformity of product and quality. Without it, plant manager
Rick Wynveen says, four different people will perform the job
in four different ways, and produce four different versions of
the product.
When a new employee comes on board, he or she is trained
following an instructional sequence of practice and feedback
that Wynveen calls “tell— show—do—review.” The new worker
is paired with an experienced worker, practice is on- the- job,
and feedback brings learning and per for mance in line with the
written standard.
How do the workers train the managers? When a worker
has an idea for improving productivity and management en-
dorses it, for instance revamping the way parts arrive at a
work station to make life easier for the worker and assembly
faster, the worker who offered it takes leave from production
to help implement the new standard. “Everyone’s idea is valu-
able,” Wynveen told us, “whether you’re an engineer, a main-
tenance technician, or a production worker.”13 Likewise, when
one of the production line teams comes up short in meeting its
targets, it’s the workers who are asked to identify the problem
and redesign the production pro cess to solve it.
The instructional role of employees is most dramatically
illustrated in what Wynveen calls a Kaizen event. Kaizen is a
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 249
Japa nese term for improvement. It has been central to Toy-
ota Motor Company’s success and has been adopted by
many other companies to help create a culture of continuous
improvement.
When Wynveen wanted to effect a major increase in the
productivity of the plant’s double- hung window line, he re-
cruited a design team to engage in a Kaizen event. The team
consisted of an engineer, a maintenance technician, a crew
leader from the production line, and fi ve production work-
ers. They were given the stretch goals of reducing the line’s
space requirement by 40 percent and doubling production.
(Stretch goals are ones that cannot be reached through incre-
mental improvement but require signifi cant restructuring of
methods.) The team met in a conference room eight hours a
day for a week, in effect teaching each other the elements, ca-
pacities, and constraints of the production pro cess and asking
themselves how to make it smaller and better. The following
week they came back to Wynveen saying “Here’s what we
think we can do.”
Wynveen took their plan to each of the twelve work stations
on the line with a simple question: What changes are needed to
make this plan work? Production workers and their crew lead-
ers put their heads together and redesigned the components to
fi t the new plan. The line was disassembled and rebuilt in two
halves, over two weekends, restarted, and fi ne- tuned over sub-
sequent months, a pro cess that generated yet an additional two
hundred improvements suggested by production workers: a
learning pro cess of testing, feedback, and correction.
The result? After fi ve months, the plant had met Wynveen’s
stretch goals and cut costs in half. During the conversion and
shakedown, the production teams never missed a shipment
and never had a quality issue. The principle of engagement—
actively seeking the ideas of employees from all levels of the
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 250
plant—is central to the company’s culture of continuous im-
provement. “Engagement is a management style of trust and a
willingness to talk,” Wynveen says. The production employees
learned how to refi ne the design as they worked, and the
company provided a way for suggestions to be heard and for
employees to participate in their implementation.
A learning culture places the responsibility for learning
with the employees and empowers them to change the system.
Problems become information rather than failures. And learn-
ing by solving the problems (generation) and by teaching oth-
ers (elaboration) becomes an engine for continuous improve-
ment of per for mance by individuals and by the production
line that they compose.
Inner Gate Acu punc ture
There are times when getting learning and teaching right can
shape the trajectory of an entire life. Consider Erik Isaacman,
a thirty- something husband, father of two, and passionate
practitioner of traditional Chinese medicine: acu punc ture,
massage, and herbal therapy. We close this chapter with the
story of a turning point in Erik’s fl edgling practice, Inner Gate
Acu punc ture in Portland, Oregon. It’s the story of a clinic that
was succeeding in its therapeutic mission but struggling as a
business.
Erik and his business partner, Oliver Leonetti, opened In-
ner Gate in 2005, after earning graduate degrees in tradi-
tional Chinese medicine. Through networking and creative
marketing, they began to build a stream of clients. Portland is
fertile territory for alternative therapies. The business grew,
and so did expenses: They leased larger space, hired an assis-
tant to schedule appointments and manage the offi ce, brought
in a third clinician, and hired a back- offi ce employee. “We were
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 251
growing 35 to 50 percent every year,” Erik recalled when we
spoke. “The growth covered up a lot that was missing: We
didn’t have the systems in place to manage costs. We didn’t
have clear goals or a management hierarchy. It was fast be-
coming clear that we had no idea how to run a business.”14
One of Erik’s patients is the Oregon business coach Kathy
Maixner. Maixner offered to help. “Unmanaged growth is
scary,” she told us. “You jump ahead, then you fl ounder.” She
asked a lot of questions that quickly focused Erik’s and Oli-
ver’s thinking on critical gaps in their systems. The three then
set out a schedule of frequent coaching sessions, between which
Erik and Oliver generated elements of the missing infrastruc-
ture: operating manual, job descriptions, fi nancial goals, met-
rics for mea sur ing the per for mance of their clinicians.
Every business serves two masters, its customer and its bot-
tom line. “Our clinicians need to understand more than how
to practice traditional Chinese medicine,” Erik said, as he re-
fl ected on his and Oliver’s learning curve. “They need to un-
derstand how to turn a patient visit into a relationship, and
how to help the patient understand his insurance coverage.
Satisfying our customers is our highest priority. But we have
to pay the bills, too.”
Maixner used generation, refl ection, elaboration, and re-
hearsal in her coaching sessions, asking questions that exposed
gaps in thinking or that invited the partners to strengthen
their understanding of the behavior and tools they needed to
adopt in order to be effective managers who delegate and
empower their employees.
They developed a system to track clinic metrics, like the
number of patient visits, patient disappearance rates, and re-
ferral sources. They learned how to ensure they were paid ap-
propriately by insurance companies, raising reimbursements
from as little as 30 cents on the dollar. They drafted a uniform
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 252
protocol, or template, for clinicians to follow in seeing a new
patient. They role- played conversations between themselves
and their employees.
Central to putting the clinic on sound footing has been Erik’s
becoming an effective coach and teacher of his coworkers.
“We’re not just letting it be intuitive,” he said. For example,
the new protocol for clinicians to follow in a patient’s initial
session helps to clarify what brought the patient in, the thera-
pies that might be useful, how to describe these therapies in
terms the patient would be likely to understand, how to discuss
fees and insurance reimbursement options, and how to rec-
ommend a treatment plan.
“If you’re the clinician, we’ll role- play: You are now the pa-
tient, and I’m the clinician. We raise questions, objections, and
we practice how to respond and end up at the right place for
the patient and for the clinic. Then we’ll switch roles. We re-
cord the role playing, and we listen to the differences: how you
have responded to the patient, and how I have responded.”
In other words, learning through simulation, generation,
testing, feedback, and practice.
As we write this, Inner Gate is in its eighth year, supporting
four clinicians and two and a half administrative staff. A fi fth
clinician is coming up to speed, and the partners are looking
to open a second location. By dedicating themselves to being
learners as well as teachers, Erik and Oliver have turned their
passion into a solid enterprise, and a top- rated acu punc ture
clinic in Portland.
We have talked throughout this book about learning, not about
education. The responsibility for learning rests with every indi-
vidual, whereas the responsibility for education (and training,
too) rests with the institutions of society. Education embraces
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Make It Stick ê 253
a world of diffi cult questions. Are we teaching the right things?
Do we reach children young enough? How should we mea sure
outcomes? Are our young people mortgaging their futures to
pay for a college degree?
These are urgent issues, and we need to wrestle through
them. But while we’re doing that, the techniques for highly
effective learning that are outlined in this book can be put
to use right now everywhere learners, teachers, and trainers
are at work. They come at no cost, they require no struc-
tural reform, and the benefi ts they promise are both real and
long- lasting.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

N O T E S
S U G G E S T E D R E A D I N G
A C K N O W L E D G M E N T S
I N D E X
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

257
1. Learning Is Misunderstood
1. The term mental model was fi rst coined to refer to complex
conceptual repre sen ta tions, such as understanding the workings
of an electrical grid or an automobile engine. We extend the
use here to motor skills, referring to what are sometimes called
motor schemas.
2. The data about student study strategies come from a survey
by J. D. Karpicke, A. C. Butler, & H. L. Roediger, Metacogni-
tive strategies in student learning: Do students practice re-
trieval when they study on their own?, Memory 17 (2010),
471– 479.
3. Peter Brown interview of Matt Brown, March 28, 2011, Hast-
ings, MN. All quotes of Matt Brown are from this interview.
4. Find this advice online at http:// caps .gmu .edu /educational
programs /pamphlets /StudyStrategies , accessed November
1, 2013.
5. Find this advice online at www .dartmouth .edu /~acskills /docs
/study _actively , accessed November 1, 2013.
Notes
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 12–20 ê 258
6. The study advice cited from the St. Louis Post- Dispatch is dis-
tributed by Newspapers in Education and can be seen online
in “Testing 1, 2, 3! How to Study and Take Tests,” p14, at
http:// nieonline .com /includes /hottopics /Testing %20Testing
%20123 , accessed November 2, 2013.
7. The studies showing the futility of mere repetition in recalling
the details of what a penny looks like or where a fi re extin-
guisher is located in a building are in R. S. Nickerson & M. J.
Adams, Long term memory of a common object, Cognitive
Psychology 11 (1979), 287– 307, and A. D. Castel, M. Vendetti, &
K. J. Holyoak, Inattentional blindness and the location of fi re
extinguishers, Attention, Perception and Per for mance 74 (2012),
1391– 1396.
8. The experiment referred to by Tulving was reported in E. Tulv-
ing, Subjective or ga ni za tion and the effects of repetition in
multi- trial free recall learning, Journal of Verbal Learning and
Verbal Behavior 5 (1966), 193– 197.
9. The experiment on how rereading does not produce much
benefi t in later retention is from A. A. Callender & M. A. Mc-
Daniel, The limited benefi ts of rereading educational texts,
Contemporary Educational Psychology 34 (2009), 30– 41.
10. The survey showing that students prefer to reread as a study
strategy is from Karpicke et al., Metacognitive strategies. Data
were also taken from J. McCabe, Metacognitive awareness of
learning strategies in undergraduates, Memory & Cognition
39 (2010), 462– 476.
11. Illusions of knowing will be a theme throughout this book. A
general reference is Thomas Gilovich, How We Know What
Isn’t So: The Fallibility of Human Reason in Everyday Life
(New York: Free Press, 1991).
12. R. J. Sternberg, E. L. Grigorenko, & L. Zhang, Styles of learning
and thinking matter in instruction and assessment, Perspectives
on Psychological Science 3 (2008), 486– 506.
13. The project at Columbia Middle School is reported in M. A.
McDaniel, P. K. Agarwal, B. J. Huelser, K. B. McDermott, &
H. L. Roediger (2011). Test- enhanced learning in a middle
school science classroom: The effects of quiz frequency and
placement. Journal of Educational Psychology, 103, 399– 414.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 20–32 ê 259
14. The concept of testing as a learning tool is described in detail
in Chapter 2. A general reference on material in this chapter
(and other educational applications of cognitive psychology
to education) is M. A. McDaniel & A. A. Callender, Cogni-
tion, memory, and education, in H. L. Roediger, Cognitive
Psychology of Memory, vol. 2 of Learning and Memory:
A  Comprehensive Reference (Oxford: Elsevier, 2008), pp.
819– 844.
2. To Learn, Retrieve
1. Peter Brown interview of Michael Ebersold, December 31,
2011, Wabasha, MN. All quotes from Ebersold are from this
interview.
2. The early work on forgetting curves was published by Her-
mann Ebbinghaus in 1885 in a book translated into En glish as
On Memory in 1913. The most recent version is H. Ebbing-
haus, Memory: A contribution to experimental psychology
(New York: Dover, 1964). Ebbinghaus is often viewed as the
“father” of the scientifi c study of memory.
3. The quotes from Aristotle and Bacon are from H. L. Roediger
& J. D. Karpicke, The power of testing memory: Basic research
and implications for educational practice, Perspectives on Psy-
chological Science 1 (2006), 181– 210.
4. Benedict Carey, “Forget what you know about good study
habits,” New York Times, September 7, 2010. The study re-
ported in this article was H. L. Roediger & J. D. Karpicke,
Test- enhanced learning: Taking memory tests improves long-
term retention, Psychological Science 17 (2006), 249– 255.
5. A. I. Gates, Recitation as a factor in memorizing, Archives of
Psychology 6 (1917) and H. F. Spitzer, Studies in retention,
Journal of Educational Psychology 30 (1939), 641– 656. These
two large- scale studies with children in elementary and middle
school were among the fi rst to document that taking a test or
reciting material appearing in didactic texts improved reten-
tion for that material.
6. The study involving repeated testing versus repeated studying
was E. Tulving, The effects of pre sen ta tion and recall of material
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 33–35 ê 260
in free- recall learning, Journal of Verbal Learning and Verbal
Behavior 6 (1967), 175– 184. The study involving amounts of
forgetting being reduced from testing is M. A. Wheeler & H. L.
Roediger, Disparate effects of repeated testing: Reconciling
Ballard’s (1913) and Bartlett’s (1932) results, Psychological
Science 3 (1992), 240– 245.
7. The positive effects of generation appear in L. L. Jacoby, On
interpreting the effects of repetition: Solving a problem versus
remembering a solution, Journal of Verbal Learning and Ver-
bal Behavior 17 (1978), 649– 667. This laboratory experi-
ment demonstrated that generation of target information does
not have to be exceptionally challenging in order for genera-
tion to produce better retention relative to reviewing informa-
tion to be learned.
8. Two papers describing the research at Columbia Middle School
are H. L. Roediger, P. K. Agarwal, M. A. McDaniel, & K. Mc-
Dermott, Test- enhanced learning in the classroom: Long- term
improvements from quizzing, Journal of Experimental Psychol-
ogy: Applied 17 (2011), 382– 395, and M. A. McDaniel, P. K.
Agarwal, B. J. Huelser, K. B. McDermott, & H. L. Roediger,
Test- enhanced learning in a middle school science classroom:
The effects of quiz frequency and placement, Journal of Edu-
cational Psychology 103 (2011), 399– 414. These companion
papers were the fi rst to report well- controlled experiments
on the benefi ts of quizzing for middle school students’ per for-
mances on classroom exams in social studies and science. The
fi ndings demonstrated that quizzing produced a signifi cant
improvement relative to no- quizzing or directed review of tar-
get concepts on unit exams and on cumulative semester and
end- of- year exams. In addition, in some cases a single well-
placed review quiz produced benefi ts on the exams that were
as robust as several repeated quizzes. For an interesting view
of this project by one of the lead researchers, the fi rst teacher
and the fi rst principal involved, see P. K. Agarwal, P. M. Bain, &
R. W. Chamberlain, The value of applied research: Retrieval
practice improves classroom learning and recommendations
from a teacher, a principal, and a scientist. Educational Psy-
chology Review 24 (2012), 437– 448.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 37–40 ê 261
9. Peter Brown interview of Roger Chamberlain, October 27,
2011, Columbia Middle School, Illinois. All quotes from Cham-
berlain are from this interview.
10. Peter Brown interview of Andrew Sobel, December 22,
2011, St. Louis, Missouri. All quotes from Sobel are from this
interview.
11. The experiments described here are by H. L. Roediger &
J. D. Karpicke, Test- enhanced learning: Taking memory tests
improves long- term retention, Psychological Science 17
(2006), 249– 255. Experiments showing that recall of stud-
ied prose passages produced better 2- day and one- week
retention than did restudy of the passages. For an earlier
study with the same outcome using word lists, see C. P.
Thompson, S. K. Wenger, & C. A. Bartling, How recall facili-
tates subsequent recall: A reappraisal. Journal of Experi-
mental Psychology: Human Learning and Memory 4 (1978),
210– 221. This experiment showed that massing study was
better than practicing retrieval on an immediate test but not
a delayed test.
12. Many studies exist on the effects of feedback. One is A. C. But-
ler & H. L. Roediger, Feedback enhances the positive effects
and reduces the negative effects of multiple- choice testing.
Memory & Cognition 36 (2008), 604– 616. The experiments
show that feedback strengthens the effects of testing alone,
and that feedback may be more benefi cial when it’s slightly
delayed. The authors also showed that that feedback enhances
the positive effects and reduces the negative effects of multiple-
choice testing. For motor skills, a classic reference is A. W. Sal-
moni, R. A. Schmidt, and C. B. Walter, Knowledge of results
and motor learning: A review and critical reappraisal. Psycho-
logical Bulletin 95 (1984), 355– 386. The authors proposed
the guidance hypothesis of feedback effects on motor learning:
Frequent immediate feedback can be detrimental to long- term
learning— even though it helps immediate performance—
because it provides a crutch during practice that is no longer
present on a delayed test.
13. The open- book test study was P. K. Agarwal, J. D. Karpicke,
S. H. K. Kang, H. L. Roediger, & K. B. McDermott, Examining
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 41–42 ê 262
the testing effect with open- and closed- book tests, Applied
Cognitive Psychology 22 (2008), 861– 876.
14. Studies comparing the types of tests are S. H. Kang, K. B. Mc-
Dermott, H. L. Roediger, Test format and corrective feedback
modify the effect of testing on long- term retention. Eu ro pe an
Journal of Cognitive Psychology 19 (2007), 528– 558, and
M. A. McDaniel, J. L. Anderson, M. H. Derbish, & N. Morri-
sette, Testing the testing effect in the classroom. Eu ro pe an
Journal of Cognitive Psychology 19 (2007), 494– 513. These
parallel experiments, one conducted in the laboratory and one
in a college course, showed that a short- answer quiz with feed-
back produced better gains on fi nal tests than a recognition
quiz with feedback. The implication is that the testing effect is
more robust when more effort is required for retrieval, as it
typically is for short- answer questions than for multiple choice
questions. However, some studies have shown that multiple
choice tests, especially when given repeatedly, can have as
much positive effect in the classroom as a short- answer test;
see K. B. McDermott, P. K. Agarwal, L. D’Antonio, H. L. Roed-
iger, & M. A. McDaniel, Both multiple- choice and short-
answer quizzes enhance later exam per for mance in middle and
high school classes, Journal of Experimental Psychology: Ap-
plied (in press).
15. These studies examined students’ use of testing as a study
strategy: J. D. Karpicke, A. C. Butler, & H. L. Roediger, III,
Metacognitive strategies in student learning: Do students
practice retrieval when they study on their own?, Memory 17
(2009), 471– 479, and N. Kornell & R. A. Bjork, The promise
and perils of self regulated study, Psychonomic Bulletin &
Review 14 (2007), 219– 224. These studies reported the sur-
veys of college students’ use of retrieval practice as study
technique.
16. Taking a test— even when one fails to correctly recall informa-
tion on it— enhances learning from a new study episode. See
K. M. Arnold & K. B. McDermott, Test- potentiated learning:
Distinguishing between the direct and indirect effects of tests,
Journal of Experimental Psychology: Learning, Memory and
Cognition 39 (2013), 940– 945.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 43–48 ê 263
17. This is a study of frequent low- stakes testing: F. C. Leeming,
The exam- a-day procedure improves per for mance in psychol-
ogy classes, Teaching of Psychology 29 (2002), 210– 212. The
author found that in sections in which he gave students a short
test at the start of every class the students attended class more
often and felt that they studied more and learned more than
students in classes with only four tests throughout the semes-
ter. Final test per for mance for the different sections (quiz a day
or no quiz a day) confi rmed students’ impressions. Another
interesting study conducted in a classroom is K. B. Lyle & N.
A. Crawford, Retrieving essential material at the end of lec-
tures improves per for mance on statistics exams, Teaching of
Psychology 38 (2011), 94– 97.
Two reviews of research on retrieval practice and testing ap-
pear in H. L. Roediger & J. D. Karpicke, The power of testing
memory: Basic research and implications for educational prac-
tice, Perspectives on Psychological Science 1 (2006), 181– 210.
This paper represents a comprehensive review of laboratory
and classroom studies over nearly one hundred years of re-
search, showing that testing can be a powerful learning tool. A
more recent review points to many benefi ts of frequent testing
in addition to the direct benefi t from retrieval practice: H. L.
Roediger, M. A. Smith, & A. L. Putnam, Ten benefi ts of testing
and their applications to educational practice, in J. Mestre &
B. H. Ross (eds.), Psychology of Learning and Motivation (San
Diego: Elsevier Academic Press, 2012). This chapter provides
a summary of the host of potential benefi ts of using testing as
a learning technique.
3. Mix Up Your Practice
1. The report of the beanbag study can be found in R. Kerr & B.
Booth, Specifi c and varied practice of motor skill, Perceptual
and Motor Skills 46 (1978), 395– 401.
2. Many well- controlled experiments conducted with a variety of
materials and training tasks provide solid evidence that massed
practice (doing the same thing over and over repeatedly, a
strategy often preferred by learners) is inferior to spacing and
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 48–53 ê 264
interleaving of practice for learning and retention. A review of
the literature on the spacing effect in memory can be found in
N. J. Cepeda, H. Pashler, E. Vul, J. T. Wixted, & D. Rohrer, Dis-
tributed practice in verbal recall tasks: A review and quantita-
tive synthesis, Psychological Bulletin 132 (2006), 354– 380.
3. The surgery study is C-A. E. Moulton, A. Dubrowski, H. Mac-
Rae, B. Graham, E. Grober, & R. Reznick, Teaching surgical
skills: What kind of practice makes perfect?, Annals of Sur-
gery 244 (2006), 400– 409. This study randomly assigned sur-
gical residents to either a normal daylong intensive lesson on a
surgical procedure or to an experimental lesson that spaced
four short periods of instruction over several weeks. The
fi ndings, showing better retention and application of the sur-
gical techniques after spaced instruction, prompted the medical
school to reexamine their standard instructional procedure of
cramming instruction on a par tic u lar surgical technique into
one intensive session.
4. The study showing the benefi t of interleaving in mathematics
problems is D. Rohrer & K. Taylor, The shuffl ing of mathe-
matics problems improves learning, Instructional Science 35
(2007), 481– 498. The standard practice in mathematics text-
books is to cluster practice problems by problem type. This
laboratory experiment demonstrated that this standard prac-
tice produced inferior per for mance on a fi nal test in which
new problems of each problem type were given relative to a
practice procedure in which the practice problems from differ-
ent problem types were shuffl ed (interleaved).
5. The study relating differences in practice strategies to differ-
ences in motor- memory consolidation was by S. S. Kantak, K.
J. Sullivan, B. E. Fisher, B. J. Knowlton, & C. J. Winstein, Neural
substrates of motor memory consolidation depend on practice
structure, Nature Neuroscience 13 (2010), 923– 925.
6. The anagram study was by M. K. Goode, L. Geraci, & H. L.
Roediger, Superiority of variable to repeated practice in trans-
fer on anagram solution, Psychonomic Bulletin & Review 15
(2008), 662– 666. These researchers gave subjects practice on
solving anagrams for a set of words: one group was given the
same anagram for a par tic u lar target word on every practice
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 54–60 ê 265
trial (massed practice), whereas another group was given a dif-
ferent anagram for a par tic u lar target word on each practice
trial (varied practice). Surprisingly, varied practice produced
better per for mance on a fi nal trial in which the anagrams were
the very ones that were practiced in the other group that had
practiced the tested anagram repeatedly.
7. The study about learning of artists’ styles was by N. Kornell &
R. A. Bjork, Learning concepts and categories: Is spacing the
“enemy of induction”?, Psychological Science 19 (2008), 585–
592. In these experiments, college students attempted to learn
the painting style of a number of relatively unknown artists.
Students learned the styles better when the paintings of the artists
were interleaved compared to when each artist’s paintings were
massed during learning. Yet, at odds with the objective learning
outcomes, most of the learners insisted that they learned better
with the massed pre sen ta tions. Another informative study is
S. H. K. Kang & H. Pashler, Learning painting styles: Spacing
is advantageous when it promotes discriminative contrast, Ap-
plied Cognitive Psychology 26 (2012), 97– 103, which showed
that mixing the examples of paintings helped to highlight the
differences among paint ers’ styles (what we are calling discrimi-
native contrast).
8. The fi nding that improving discrimination among examples
contributes to conceptual learning is from L. L. Jacoby, C. N.
Wahlheim, & J. H. Coane, Test- enhanced learning of natural
concepts: effects on recognition memory, classifi cation, and
metacognition, Journal of Experimental Psychology: Learning,
Memory, and Cognition 36 (2010), 1441– 1442.
9. Peter Brown interview of Doulas Larsen, December 23, 2011,
St. Louis, MO. All quotes from Larsen are from this interview.
10. Doug Larsen’s work can be found in D. P. Larsen, A. C. Butler, &
H. L. Roediger, Repeated testing improves long- term retention
relative to repeated study: a randomized controlled trial. Med-
ical Education 43 (2009), 1174– 1181; D. P. Larsen, A. C. But-
ler, A. L. Lawson, & H. L. Roediger, The importance of seeing
the patient: Test- enhanced learning with standardized patients
and written tests improves clinical application of knowledge,
Advances in Health Science Education 18 (2012), 1– 17; and
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 62–69 ê 266
D. P. Larsen, A. C. Butler, & H. L. Roediger, Comparative ef-
fects of test- enhanced learning and self- explanation on long-
term retention, Medical Education 47, 7 (2013), 674– 682.
11. Peter Brown interview of Vince Dooley, February 18, 2012,
Athens, GA. All quotes of Dooley are from this interview.
12. Psychologists interested in learning have long distinguished
between momentary per for mance and underlying learning (as
mea sured after a delay with intervening reminders). As a simple
example, someone might tell you that James Monroe was the
fi fth US president. You would probably be able to answer cor-
rectly if asked about the fi fth president for the rest of the day
or the week. That would be due to having just heard it (thus
boosting the momentary strength or what the psychologists
Robert and Elizabeth Bjork call retrieval strength). However,
if someone asks you a year later about the fi fth president, this
would be a mea sure of habit strength or, as the Bjorks call it,
storage strength. See R. A. Bjork & E. L. Bjork, A new theory
of disuse and an old theory of stimulus fl uctuation, in A. F.
Healy, S. M. Kosslyn, & R. M. Shiffrin (eds.), From learning
pro cesses to cognitive pro cesses: Essays in honor of William
K. Estes (vol. 2, pp. 35– 67) (Hillsdale, NJ: Erlbaum, 1992).
For a recent discussion, see N. C. Soderstrom & R. A. Bjork,
Learning versus per for mance, in D. S. Dunn (ed.), Oxford
Bibliographies online: Psychology (New York: Oxford Univer-
sity Press, 2013) doi 10. 1093/obo/9780199828340-0081.
4. Embrace Diffi culties
1. All quotes of Mia Blundetto are from telephone conversations
between Peter Brown, in Austin, TX, and Blundetto, at Camp
Fuji, Japan, on February 9 and March 2, 2013.
2. The phrase “desirable diffi culties in learning” originated in
the article R. A. Bjork & E. L. Bjork, A new theory of disuse
and an old theory of stimulus fl uctuation, in A. F. Healy, S. M.
Kosslyn, & R. M. Shiffrin (eds.), From learning pro cesses to
cognitive pro cesses: Essays in honor of William K. Estes (vol.
2, pp. 35– 67) (Hillsdale, NJ: Erlbaum, 1992). The idea seems
counterintuitive— how can making a task more diffi cult lead
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 73–78 ê 267
to it’s being learned better and retained longer? The rest of this
chapter explains this puzzle and why it seems to arise.
3. Psychologists distinguish among three stages in the learning
/memory pro cess: Encoding (or acquisition of information);
storage (per sis tence of information over time); and retrieval
(later use of the information). Any time you successfully re-
membered an event, all three stages were intact. Forgetting (or
the occurrence of false memories— retrieving a wrong “mem-
ory” of some event but believing it to be right) can occur at any
stage.
4. For a classic article on consolidation, see J. L. McGaugh,
Memory— a century of consolidation, Science 287 (2000),
248– 251. For a somewhat more recent and lengthy review, see
Y. Dudai, The neurobiology of consolidations, or, how stable
is the engram?, Annual Review of Psychology 55 (2004), 51–
86. For evidence that sleep and dreaming helps with memory
consolidation, see E. J. Wamsley, M. Tucker, J. D. Payne, J. A.
Benavides, & R. Stickgold, Dreaming of a learning task is as-
sociated with enhanced sleep- dependent memory consolida-
tion, Current Biology 20 (2010), 850– 855.
5. Endel Tulving emphasized the critical role of retrieval cues in
remembering by stressing that remembering is always a prod-
uct of both the information stored (the memory trace) and the
cues in the environment that might remind you of the infor-
mation. With stronger cues, even weaker traces become acces-
sible for recall. See E. Tulving, Cue dependent forgetting, Ameri-
can Scientist 62 (1974), 74– 82.
6. Robert Bjork has emphasized the role of forgetting of an
original event to some degree as aiding the amount of learning
from a second pre sen ta tion of the same event. The power of
spacing of events on memory (the spacing effect) is one exam-
ple. For examples see N. C. Soderstrom & R. A. Bjork, Learn-
ing versus per for mance, in D. S. Dunn (ed.), Oxford Bibliog-
raphies in Psychology (New York: Oxford University Press, in
press).
7. The problem of old learning interfering with new learning is
called negative transfer in psychology. For evidence on how
forgetting of old information can help in learning of new
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 79–82 ê 268
information, see R. A. Bjork, On the symbiosis of remember-
ing, forgetting, and learning, in A. S. Benjamin (ed.), Success-
ful Remembering and Successful Forgetting: A Festschrift in
Honor of Robert A. Bjork (pp. 1– 22) (New York: Psychology
Press, 2010).
8. The situation where information still exists in memory yet
cannot be actively recalled has been emphasized as a key prob-
lem in remembering (Tulving, Cue dependent forgetting). Stored
information is said to be available, whereas retrievable informa-
tion is accessible. The instance we give in this chapter of an old
address that a person cannot recall but could easily recognize
among several possibilities is an example of the power of re-
trieval cues in making available memories accessible to con-
scious awareness. Recognition tests usually provide more pow-
erful cues than recall tests.
9. The study of baseball players practicing hitting was reported
in K. G. Hall, D. A. Domingues, & R. Cavazos, Contextual in-
terference effects with skilled baseball players, Perceptual and
Motor Skills 78 (1994), 835– 841.
10. “Reload” is the term the Bjorks use to indicate reconstruction
of a concept or skill after some delay. A good, accessible source
for these ideas is E. L. Bjork & R. A. Bjork, Making things
hard on yourself, but in a good way: Creating desirable diffi –
culties to enhance learning, in M. A. Gernsbacher, R. W. Pew,
L. M. Hough, & J. R. Pomerantz (eds.), Psychology and the real
world: Essays illustrating fundamental contributions to soci-
ety (pp. 56– 64) (New York: Worth, 2009).
11. The term reconsolidation has several different uses in psychol-
ogy and neuroscience. The core meaning is the reviving of
an original memory and then having it consolidate again (as
in retrieval practice). However, the original memory can be
changed by reconsolidation if new information is introduced
when the original memory is revived. Reconsolidation has been
studied by both neurobiologists and cognitive psychologists.
Some entry points into this literature are D. Schiller, M. H.
Monfi ls, C. M. Raio, D. C. Johnson, J. E. LeDoux, & E. A.
Phelps, Preventing the return of fear in humans using recon-
solidation update mechanisms, Nature 463 (2010), 49– 53,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 85–90 ê 269
and B. Finn & H. L. Roediger, Enhancing retention through
reconsolidation: Negative emotional arousal following re-
trieval enhances later recall, Psychological Science 22 (2011),
781– 786.
12. For the research on interleaving, see M. S. Birnbaum, N. Kornell,
E. L. Bjork, & R. A. Bjork, Why interleaving enhances inductive
learning: The roles of discrimination and retrieval, Memory &
Cognition 41 (2013), 392– 402.
13. Several studies have shown that although making text more
diffi cult to read by leaving out letters or using an unusual
typography may slow reading, readers remember more. See
M. A. McDaniel, G. O. Einstein, P. K. Dunay, & R. Cobb,
Encoding diffi culty and memory: Toward a unifying theory,
Journal of Memory and Language 25 (1986), 645– 656, and C.
Diemand- Yauman, D. Oppenheimer, & E. B. Vaughn, Fortune
favors the bold (and the italicized): Effects of disfl uency on
educational outcomes, Cognition 118 (2010), 111– 115. The
study in which the outline either matched or mismatched the
chapter is S. M. Mannes & W. Kintsch, Knowledge or ga ni za-
tion and text or ga ni za tion, Cognition and Instruction 4
(1987), 91– 115.
14. Studies showing that generation can improve retention include
L. L. Jacoby, On interpreting the effects of repetition: Solving
a problem versus remembering a solution, Journal of Verbal
Learning and Verbal Behavior 17 (1978), 649– 667, and N. J.
Slamecka & P. Graf, The generation effect: Delineation of a
phenomenon, Journal of Experimental Psychology: Human
Learning and Memory 4 (1978), 592– 604. More recently, the
act of generation before a learning episode has also been shown
to enhance per for mance; see L. E. Richland, N. Kornell, & L. S.
Kao, The pretesting effect: Do unsuccessful retrieval attempts
enhance learning? Journal of Experimental Psychology: Ap-
plied 15 (2009), 243– 257.
15. The cited study of write- to- learn is K. J. Gingerich, J. M. Bugg,
S. R. Doe, C. A. Rowland, T. L. Richards, S. A. Tompkins, &
M. A. McDaniel, Active pro cessing via write- to- learn assign-
ments: Learning and retention benefi ts in introductory psychol-
ogy, Teaching of Psychology, (in press).
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 90–102 ê 270
16. B. F. Skinner had many infl uential and interesting ideas about
learning in schools as well as on other topics in American soci-
ety. His important book Science and Human Behavior can be
downloaded at no cost from the website of the B. F. Skinner
Foundation. See also B. F. Skinner, Teaching machines, Science
128 (1958), 969– 977. Errorless learning does seem important
in teaching memory- impaired people, but for most educational
situations, errors (so long as they are corrected with feedback)
do not hurt and may even aid learning. For example, see B. J.
Huelser & J. Metcalfe, Making related errors facilitates learn-
ing, but learners do not know it, Memory & Cognition 40
(2012), 514– 527.
17. The French study on schoolchildren solving anagrams appears
in F. Autin & J. C. Croziet, Improving working memory effi –
ciency by reframing metacognitive interpretation of task diffi –
culty, Journal of Experimental Psychology: General 141 (2012),
610– 618. For a story on the Festival of Errors, see Lizzy Davis,
“Paris Stages ‘Festival of Errors’ to Teach French Schoolchildren
How to Think,” Guardian, July 21, 2010, http:// www .guardian
.co .uk /world /2010 /jul /21 /france -paris -festival -of -errors, ac-
cessed October 22, 2013.
18. Peter Brown telephone interview of Bonnie Blodgett, March
10, 2013, St. Paul, MN. All quotes of Blodgett are from this
interview.
19. The quote from the Bjorks comes from E. L. Bjork & R. A.
Bjork, Making things hard on yourself, but in a good way:
Creating desirable diffi culties to enhance learning, in M. A.
Gernsbacher, R. W. Pew, L. M. Hough, and J. R. Pomerantz
(eds.), Psychology and the real world: Essays illustrating funda-
mental contributions to society (pp. 56– 64) (New York: Worth,
2009).
5. Avoid Illusions of Knowing
1. The fi eld of metacognition— what we know about what we
know and how we assess our performance— is a burgeoning
one in psychology. A good general reference about metacog-
nition is John Dunlosky and Janet Metcalfe, Metacognition
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 104–109 ê 271
(Los Angeles: Sage, 2009). Daniel Kahneman, Thinking Fast
and Slow (New York: Farrar, Strauss and Giroux, 2011), also
includes a discussion of many illusions to which the mind
falls prey. For an earlier discussion of many illusions, see
Thomas Gilovich, How We Know What Isn’t So: The Fallibility
of Human Reason in Everyday Life (New York: Free Press,
1991). For a briefer review, see H. L. Roediger, III, & A. C.
Butler, Paradoxes of remembering and knowing, in N. Kapur,
A. Pascual- Leone, & V. Ramachandran (eds.), The Paradoxi-
cal Brain (pp. 151– 176) (Cambridge: Cambridge University
Press, 2011).
2. Peter Brown interview of David Garman, December 12,
2011, Minneapolis, MN. All quotes of Garman are from this
interview.
3. The China Airlines incident is reported in: National Transpor-
tation Safety Board, “Aircraft Accident report– China Airlines
Boeing 747- SP N4522V, 300 Nautical Miles Northwest of San
Francisco, California, February 19, 1985,” March 29, 1986, and
can be found at http:// www .rvs .uni -bielefeld .de /publications
/Incidents /DOCS /ComAndRep /ChinaAir /AAR8603 .html, ac-
cessed October 24, 2013.
The report of the National Transportation Safety Board’s
investigation into the Carnahan accident is reported by: D. A.
Lombardo, “ ‘Spatial disorientation’ caused Carnahan crash,”
Aviation International News, AINonline, July 2002, and can
be found at: http:// www .ainonline .com /aviation -news /aviation
-international -news /2008 -04 -16 /spatial -disorientation -caused
-carnahan -crash, accessed October 24, 2013.
The report of the National Transportation Safety Board’s
investigation into the J. F. Kennedy Jr. accident is reported
by: N. Sigelman, “NTSB says spatial disorientation caused
Cape Air crash,” Martha’s Vineyard Times, mntimes .com, and
can be found at http:// www .mvtimes .com /ntsb -says -spatial
-disorientation -caused -cape -air -crash -960 /, accessed October
24, 2013.
4. E. Morris, “The anosognosic’s dilemma: Something’s wrong
but you’ll never know what it is” (pt. 5), New York Times, June
24, 2010.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 111–115 ê 272
5. L. L. Jacoby, R. A. Bjork, & C. M. Kelley, Illusions of compre-
hension, competence, and remembering, in D. Druckman &
R. A. Bjork (eds.), Learning, remembering, believing: Enhancing
human per for mance (pp. 57– 80) (Washington, DC: National
Academy Press, 1994).
6. The Carol Harris/Helen Keller study is reported in R. A. Sulin &
D. J. Dooling, Intrusion of a thematic idea in retention of
prose, Journal of Experimental Psycholog 103 (1974), 255–
262. For an overview on memory illusions, see H. L. Roediger &
K. B. McDermott, Distortions of memory, in F. I.M. Craik &
E. Tulving (eds.), The Oxford Handbook of Memory (pp. 149–
164) (Oxford: Oxford University Press, 2000).
7. Imagination infl ation has been shown both in studies of mem-
ories from early life and in laboratory studies. Two of the
original references for each type of study are M. Garry, C. G.
Manning, E. F. Loftus, & S. J. Sherman, Imagination infl ation:
Imagining a childhood event infl ates confi dence that it occurred,
Psychonomic Bulletin & Review 3 (1996), 208– 214, and L. M.
Goff & H. L. Roediger, Imagination infl ation for action events:
Repeated imaginings lead to illusory recollections, Memory &
Cognition 26 (1998), 20– 33.
8. The leading questions experiment is E. F. Loftus & J. C. Palmer,
Reconstruction of automobile destruction: An example of the
interaction between language and memory, Journal of Verbal
Learning and Verbal Behavior 13 (1974), 585– 589.
9. One article on the dangers of hypnosis on memory is P. A. Reg-
ister & J. F. Kihlstrom, Hypnosis and interrogative suggest-
ibility, Personality and Individual Differences 9 (1988), 549–
558. For an overview of issues in memory relevant to legal
situations, see H. L. Roediger & D. A. Gallo, Pro cesses af-
fecting accuracy and distortion in memory: An overview, in
M. L. Eisen, G. S. Goodman, & J. A. Quas (eds.), Memory and
Suggestibility in the Forensic Interview (pp. 3– 28) (Mah-
wah, NJ: Erlbaum, 2002).
10. The story about Don Thomson can be found in B. Bower,
Gone but not forgotten: Scientists uncover pervasive uncon-
scious infl uences on memory, Science News 138, 20 (1990),
312– 314.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 116–123 ê 273
11. The curse of knowledge, hindsight bias, and other topics are
covered in Jacoby, Bjork, & Kelley, Illusions of comprehen-
sion, competence, and remembering, and in many other places.
A relatively recent review of the effects of fl uency can be found
in D. M. Oppenheimer, The secret life of fl uency, Trends in
Cognitive Science 12 (2008), 237– 241.
12. Social contagion of memory: H. L. Roediger, M. L. Meade, &
E. Bergman, Social contagion of memory, Psychonomic Bulle-
tin & Review 8 (2001), 365– 371
13. Two important reviews of the false consensus effect are found in
L. Ross, The false consensus effect: An egocentric bias in social
perception and attribution pro cesses, Journal of Experimental
Social Psychology 13 (1977), 279– 301, and G. Marks, N. Miller,
Ten years of research on the false- consensus effect: An empirical
and theoretical review, Psychological Bulletin 102 (1987), 72– 90.
14. Flashbulb memories of 9/11: J. M. Talarico & D. C. Rubin,
Confi dence, not consistency, characterizes fl ashbulb memories,
Psychological Science 14 (2003), 455– 461, and W. Hirst, E. A.
Phelps, R. L. Buckner, A. Cue, D.E. Gabrieli & M.K. Johnson
Long- term memory for the terrorist attack of September 11:
Flashbulb memories, event memories and the factors that in-
fl uence their retention, Journal of Experimental Psychology:
General 138 (2009), 161– 176.
15. Eric Mazur material comes from his YouTube lecture “Confes-
sions of a converted lecturer,” available at www .youtube .com
/watch ?v=WwslBPj8GgI, accessed October 23, 2013.
16. The curse of knowledge study about guessing tunes tapped
out is from L. Newton, Overconfi dence in the communication
of intent: Heard and unheard melodies (Ph.D. diss., Stanford
University, 1990).
17. The Dunning- Kruger effect originated with Justin Kruger &
David Dunning, Unskilled and unaware of it: How diffi culties
in recognizing one’s own incompetence lead to infl ated self-
assessments, Journal of Personality and Social Psychology 77
(1999), 1121– 1134. Many later experimental studies and arti-
cles have been based on this one. See D. Dunning, Self- Insight:
Roadblocks and Detours on the Path to Knowing Thyself (New
York: Psychology Press, 2005).
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 123–131 ê 274
18. Stories on student- directed learning: Susan Dominus, “Play-
Dough? Calculus? At the Manhattan Free School, Anything
Goes,” New York Times, October 4, 2010, and Asha Anchan,
“The DIY Approach to Education,” Minneapolis StarTribune,
July 8, 2012.
19. Studies showing that students drop fl ashcards sooner than
they should for long- term learning include N. Kornell & R. A.
Bjork, Optimizing self- regulated study: The benefi ts— and
costs— of dropping fl ashcards, Memory 16 (2008), 125– 136,
and J. D. Karpicke, Metacognitive control and strategy selec-
tion: Deciding to practice retrieval during learning, Journal of
Experimental Psychology: General 138 (2009), 469– 486.
20. Eric Mazur has published Peer Instruction: A User’s Manual,
about his approach to teaching. (Upper Saddle River, NJ:
Prentice- Hall, 1997). In addition, he exemplifi es his approach
in an engaging YouTube lecture, “Confessions of a converted
lecturer,” described in Note 15. Again, it is http:// www .youtube
.com /watch ?v=WwslBPj8GgI, accessed October 23, 2013.
21. The Dunning quote comes from E. Morris, “The anosognosic’s
dilemma: Something’s wrong but you’ll never know what it is”
(pt. 5), New York Times, June 24, 2010.
22. Peter Brown interview of Catherine Johnson, December 13,
2011, Minneapolis, MN.
23. Much of this chapter is about how to regulate one’s learning
while avoiding various illusions and biases based on fl uency,
hindsight bias, and the like. An excellent recent article on self-
regulated learning that would prove useful to anyone seeking
more knowledge on these topics is R. A. Bjork, J. Dunlosky, &
N. Kornell, Self- regulated learning: Beliefs, techniques, and il-
lusions, Annual Review of Psychology 64 (2013), 417– 444.
6. Get Beyond Learning Styles
1. Francis Bacon (1561– 1626) was an En glish phi los o pher and
statesman. The full quote is “All rising a to great place is by a
winding stair; and if there be factions, it is good to side a man’s
self, whilst he is in the rising, and to balance himself when he
is placed.” From Bacon’s essay Of Great Place.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 133–148 ê 275
2. Peter Brown interview of Bruce Hendry, August 27, 2012, St.
Paul, MN. All quotes of Hendry are from this interview.
3. Betsy Morris, Lisa Munoz, and Patricia Neering, “Overcom-
ing dyslexia,” Fortune, May, 2002, 54– 70.
4. Annie Murphy Paul, “The upside of dyslexia,” New York
Times, February 4, 2012. The work by Geiger and Lettvin is
described in G. Geiger & J. Y. Lettvin, Developmental dyslexia:
A different perceptual strategy and how to learn a new strat-
egy for reading, Saggi: Child Development and Disabilities 26
(2000), 73– 89.
5. Survey is listed in F. Coffi eld, D. Moseley, E. Hall, Learning styles
and pedagogy in post- 16 learning, a systematic and critical re-
view, 2004, Learning and Skills Research Centre, London; the
quote by the student (“there’s no point in me reading a book”) is
from same source, p. 137. The quote “a bedlam of contradictory
claims” is from Michael Reynolds, Learning styles: a critique,
Management Learning, June 1997, vol. 28 no. 2, p. 116.
6. The material about learning styles is drawn largely from
H. Pashler, M. A. McDaniel, D. Rohrer, & R. A. Bjork, Learning
styles: A critical review of concepts and evidence, Psycho-
logical Science in the Public Interest 9 (2009), 105– 119. This
article reviewed the published evidence bearing on whether
learning is improved when the instructional method is matched
to students’ learning styles relative to when the instructional
method is not matched. Two important fi ndings were that (1)
there are very few studies that adopted the gold standard of
performing controlled experiments, and (2) the few published
experiments consistently found that matching instruction to
learning style did not improve learning. One key conclusion is
that more experimental research on this issue is needed, but at
the moment there is little evidence for the existence of com-
monly postulated learning styles.
7. An excellent text on classic views of intelligence is Earl Hunt,
Human intelligence (Cambridge: Cambridge University Press,
2010).
8. Howard Gardner’s theory is described in his book Multiple
Intelligences: New Horizons (New York: Basic Books, 2006),
among other venues.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 148–150 ê 276
9. The material on work by Robert Sternberg, Elena Grigorenko,
and their colleagues comes from several sources. For a nice
pre sen ta tion of the theory, see R. J. Sternberg, Grigorenko, E. L.,
& Zhang, L., Styles of learning and thinking in instruction
and assessment, Perspectives on Psychological Science (2008)
486– 506. Another interesting study by Sternberg, Grigorenko
and colleagues identifi ed college students who showed much
higher skill in either analytical, creative, or practical ability
(relative to the other two abilities), and assigned them to dif-
ferent classes that focused on analytic instruction, creative in-
struction, or practical instruction. Students receiving instruc-
tion that matched their strongest ability tended to perform
better on certain class- performance assessments than students
who received mismatched instruction; see R. J. Sternberg, E. L.
Grigorenko, M. Ferrari, & P. Clinkenbeard, A triarchic analy-
sis of an aptitude– treatment interaction, Eu ro pe an Journal of
Psychological Assessment 15 (1999), 1– 11.
10. The study of Brazilian children was T. N. Carraher, D. W. Car-
raher, & A. D. Schliemann, Mathematics in the streets and in
the schools, British Journal of Developmental Psychology 3
(1985), 21– 29. This fascinating study focused on fi ve children
from very poor backgrounds who were working on street cor-
ners or markets in Brazil. Per for mance was compared for simi-
lar multiplication problems presented in different contexts: the
natural context in which the child was expert (e.g., selling
coconuts, but role- played in the experiment), word problems
phrased within a different context (e.g., selling bananas), or
formal math problems without context. The children solved
nearly 100 percent of the problems when presented in the nat-
ural context, fewer in the different context, and only about a
third when presented as a formal problem. A key point is that
the children used concrete grouping strategies to solve the
natural context problems, but then switched to school- taught
strategies (not yet well learned) when presented with the for-
mal problems. The mathematical strategies the children had
developed were not evident on an academically oriented test.
11. The study of race handicappers is S. J. Ceci & J. K. Liker, A day
at the races: A study of IQ, expertise, and cognitive complex-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 152–155 ê 277
ity, Journal of Experimental Psychology: General 115 (1986),
255– 266. This study sampled harness racing fans, with some
classifi ed as expert and some as less expert. The expert group
and less expert group were evenly matched on IQ, yet the ex-
pert group showed much better success at predicting outcomes
of actual races and experimenter- contrived races. The experts’
success was related to their using an extremely complex system
of weighting and combining the range of information related
to the horses and the race conditions.
12. Dynamic testing: Robert Sternberg and Elena Grigorenko dis-
cuss this concept in Dynamic Testing: The Nature and Mea-
sure ment of Learning Potential (Cambridge: Cambridge Uni-
versity Press, 2002).
13. The fundamental work on structure building was begun by
M. A. Gernsbacher, K. R. Varner, & M. E. Faust, Investigating
differences in general comprehension skills, Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition 16
(1990), 430– 445. This article provides some of the elegant ex-
perimental work that contributed to the development of the
structure- building theory— the idea that good comprehenders
are able to construct a coherent, or ga nized repre sen ta tion of a
narrative from many sources (either read, listened to, or seen
in pictures), whereas less able comprehenders tend to construct
many, somewhat fractionated repre sen ta tions of the narratives.
This research further suggested that poor structure-builders, but
not good structure-builders, have trouble inhibiting irrelevant
information, which likely contributes to their fractionated (in-
effec tive) repre sen ta tions. Another relevant article is A. A. Cal-
lender & M. A. McDaniel, The benefi ts of embedded question
adjuncts for low and high structure builders, Journal of Edu-
cational Psychology 99 (2007), 339– 348. They demonstrated
that low structure-builders achieve less learning from stan-
dard school materials (textbook chapters) than do high
structure-builders. However, embedding questions into chap-
ters to focus the low structure-builders on the important con-
cepts (and requiring them to answer the questions) boosted
the low structure-builders to levels of learning enjoyed by high
structure- builders.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 157–158 ê 278
14. The discussion of learning concepts here relies on two studies:
T. Pachur, & H. Olsson, Type of learning task impacts per for-
mance and strategy selection in decision making, Cognitive Psy-
chology 65 (2012), 207– 240. The typical approach to studying
conceptual learning in the laboratory is to provide one ex-
ample at a time, with learners attempting to learn the likely
classifi cation of this example (e.g., given a case with a par tic-
u lar set of symptoms, what is the likely disease?). This experi-
ment modifi ed that procedure by presenting two examples
simultaneously (e.g., two cases) and requiring learners to se-
lect which of the two would be most likely to refl ect a par-
tic u lar classifi cation. This comparative approach stimulated
less focus on memorizing the examples and better extraction
of the underlying rule by which the examples were classifi ed.
A similar theme to the one above, except that the focus was
on transfer in problem solving, appears in M. L. Gick & K. J.
Holyoak, Schema induction and analogical transfer, Cogni-
tive Psychology 15 (1983), 1– 38. Learners either studied one
example of how to solve a par tic u lar problem or were re-
quired to contrast two different kinds of problems to fi gure out
the common elements of their solutions. The learners who
contrasted two problems were more likely to extract a gen-
eral solution scheme and transfer that scheme to successfully
solve new problems than were the learners who studied only
one problem.
15. The reference on rule learners and example learners is M. A.
McDaniel, M. J. Cahill, M. Robbins, & C. Wiener, Individual
differences in learning and transfer: Stable tendencies for learn-
ing exemplars versus abstracting rules, Journal of Experimen-
tal Psychology: General 143 (2014). Using laboratory learning
tasks, this novel study revealed that some people tend to learn
concepts by focusing on memorizing the par tic u lar examples
and responses associated with the examples that are used to
illustrate the concept (termed exemplar learners), whereas
other learners focus on the underlying abstraction refl ected in
the par tic u lar exemplars used to illustrate the concept (termed
abstractors). Further, a par tic u lar individual’s concept- learning
tendency persisted across quite different laboratory concept-
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 163–168 ê 279
learning tasks, suggesting that individuals may have a fairly
stable predisposition toward exemplar learning versus ab-
straction across a range of conceptual- learning tasks. Of inter-
est, an initial result was that the abstractors on average achieved
higher grades in an introductory college chemistry course than
did the exemplar learners.
7. Increase Your Abilities
1. A good introduction to Walter Mischel’s classic research on
delay in gratifi cation in children is W. Mischel, Y. Shoda, &
M. L. Rodriguez, Delay of gratifi cation in children, Science 244
(1989), 933– 938. For an accessible introduction for nonpsy-
chologists, see Jonah Lehrer, “Don’t! The secret of self- control,”
New Yorker, May 18, 2009, 26– 32. For a 2011 update, see W.
Mischel & O. Ayduk, Willpower in a cognitive- affective pro-
cessing system: The dynamics of delay of gratifi cation, in K. D.
Vohs & R. F. Baumeister (eds.), Handbook of Self- Regulation:
Research, Theory, and Applications (2nd ed., pp. 83– 105)
(New York: Guilford, 2011).
2. Accounts of Carson are reprinted at the website maintained
by historian Bob Graham, whose antecedents were among the
original American settlers in California, www .longcamp .com
/kit _bio .html, accessed October 30, 2013, and are drawn from
material published originally in the Washington Union in the
summer of 1847 and reprinted in Supplement to the Connecti-
cut Courant, July 3, 1847. Hampton Sides, Blood and Thunder
(New York: Anchor Books, 2006), 125– 126, relates Fremont’s
directing Carson on this journey.
3. Research on brain plasticity: J. T. Bruer, Neural connections:
Some you use, some you lose, Phi Delta Kappan 81, 4 (1999),
264– 277. The Goldman- Rakic quote comes from Bruer’s article,
which quotes from remarks she made before the Education
Commission of the States. Further research on brain plasticity,
with an emphasis on treatment of brain damage, may be found
in D. G. Stein & S. W. Hoffman, Concepts of CNS plasticity in
the context of brain damage and repair, Journal of Head Trauma
Rehabilitation 18 (2003), 317– 341.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 168–176 ê 280
4. H. T. Chugani, M. E. Phelps, & J. C. Mazziotta, Positron emis-
sion tomography study of human brain function development,
Annals of Neurology 22 (1987), 487– 497.
5. J. Cromby, T. Newton, and S. J. Williams, Neuroscience and
subjectivity, Subjectivity 4 (2011), 215– 226.
6. An accessible introduction to this work is Sandra Blakeslee,
“New tools to help patients reclaim damaged senses,” New
York Times, November 23, 2004.
7. P. Bach- y-Rita, Tactile sensory substitution studies, Annals of
the New York Academy of Sciences 1013 (2004), 83– 91.
8. For work on myelination, see R. D. Fields, White matter matters,
Scientifi c American 298 (2008), 42– 49, and R. D. Fields, My-
elination: An overlooked mechanism of synaptic plasticity?,
Neuroscientist 11 (December 2005), 528– 531. For a more
pop u lar exposition, see Daniel Coyle, The Talent Code (New
York: Bantam, 2009).
9. Some references on neurogenesis: P. S. Eriksson, E. Perfi lieva,
T. Björk- Eriksson, A. M. Alborn, C. Nordborg, D. A. Peter-
son, & F. H. Gage, Neurogenesis in the adult human hippo-
campus, Nature Medicine 4 (1998), 1313– 1317; P. Taupin,
Adult neurogenesis and neuroplasticity, Restorative Neurology
and Neuroscience 24 (2006), 9– 15.
10. The quote comes from Ann B. Barnet & Richard J. Barnet,
The Youn gest Minds: Parenting and Genes in the Development
of Intellect and Emotion (New York: Simon and Schuster,
1998), 10.
11. The Flynn effect is named for James Flynn, who fi rst reported
on the trend for increased IQs in the twentieth century in devel-
oped nations in J. R. Flynn, Massive IQ gains in 14 nations:
What IQ tests really mea sure, Psychological Bulletin 101
(1987), 171– 191.
12. This section draws heavily on Richard E. Nisbett, Intelligence
and How to Get It (New York: Norton, 2009.)
13. The study cited is J. Protzko, J. Aronson, & C. Blair, How to
make a young child smarter: Evidence from the database of
raising intelligence, Perspectives in Psychological Science 8
(2013), 25– 40.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 176–187 ê 281
14. The cited study is S. M. Jaeggi, M. Buschkuehl, J. Jonides, &
W. J. Perrig, Improving fl uid intelligence with training on work-
ing memory, Proceedings of the National Academy of Sciences
105 (2008), 6829– 6833.
15. The failure to replicate the working memory training result
appears in T. S. Redick, Z. Shipstead, T. L. Harrison, K. L. Hicks,
D. E. Fried, D. Z. Hambrick, M. J. Kane, & R. W. Engle, No evi-
dence of intelligence improvement after working memory
training: A randomized, placebo- controlled study, Journal of
Experimental Psychology: General 142, 2013), 359– 379.
16. Carol Dweck’s research on growth mindsets is summarized in
many places. See a nice summary by Marina Krakovsky, “The
effort effect,” Stanford Magazine, March/April 2007. For two
articles by Dweck, see H. Grant & C. S. Dweck, Clarifying
achievement goals and their impact, Journal of Personality and
Social Psychology 85 (2003), 541– 553, and C. S. Dweck, The
perils and promise of praise, Educational Leadership 65 (2007),
34– 39. She also has a book, Mindset: The New Psychology of
Success (New York: Ballantine Books, 2006).
17. Dweck quote is from Krakovsky, “Effort effect.”
18. The Dweck quotes are from Po Bronson, “How not to talk to
your kids,” New York Times Magazine, February 11, 2007.
19. Paul Tough, How Children Succeed (New York: Houghton
Miffl in Harcourt, 2012).
20. Anders Ericsson’s work on deliberate practice has been de-
scribed in many places, including Malcolm Gladwell, Outliers:
The Story of Success (New York: Little, Brown, 2008). For
accessible introductions to the work by Ericsson, see K. A. Er-
icsson & P. Ward, Capturing the naturally occurring superior
per for mance of experts in the laboratory: Toward a science of
expert and exceptional per for mance, Current Directions in
Psychological Science 16 (2007), 346– 350.
21. Mental imagery and its power as an aid to learning and mem-
ory has been appreciated since the time of the ancient Greeks.
However, psychologists only began studying the topic in ex-
perimental studies in the 1960s. Allan Paivio’s research showed
the power of imagery in controlled studies. A summary of his
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 188–193 ê 282
early research appears in A. Paivio, Imagery and Verbal
Pro cesses (New York: Holt, Rinehart, and Winston, 1971).
22. Mark Twain, “How to Make History Dates Stick,” Harper’s,
December 1914, available at www .twainquotes .com /History
Dates /HistoryDates .html, accessed October 30, 2013.
23. In the history of mnemonic devices (and psychologists’ and
educators’ attitudes toward them), they have suffered various
reversals of fortune over the centuries. They were valued from
Greek and Roman times and throughout the Middle Ages by
educated people who needed to remember large amounts of
information (e.g., to make a two- hour speech in the Roman
Senate). In recent years, educators have dismissed them as
useful merely for rote learning. However, as we show in this
chapter, this charge is not fair. Mnemonics, as used by James
Paterson and his students, can serve (as they did for the an-
cient Greeks and Romans) as or ga niz ing systems for retrieving
information. To put it simply, mnemonic devices are not neces-
sarily good for comprehending complex information, but us-
ing a mnemonic system to help to retrieve learned informa-
tion can be invaluable. James Worthy and Reed Hunt provide
an excellent introduction to the history of and psychological
research on mnemonic devices in their book Mnemonology:
Mnemonics for the 21st Century (New York: Psychology
Press, 2011).
24. James Paterson is a “memory athlete,” partaking in a growing
sport in Eu rope, China, and to some extent the United States.
Joshua Foer wrote about this emerging subculture in his best-
selling book Moonwalking with Einstein: The Art and Science
of Remembering Everything (New York: Penguin, 2011). How
long might it take a person to remember a shuffl ed deck of
cards in order? For you, a long time. For a memory athlete in
the top rungs, under two minutes. A video of Simon Reinhard
memorizing a deck of cards in 21.9 seconds is available at
www .youtube .com /watch ?v=sbinQ6GdOVk, accessed Octo-
ber 30, 2013. This was a world record at the time, but Rein-
hard has since broken it (21.1 seconds is the record as of this
writing). Reinhard has broken twenty seconds in practice ses-
sions but not yet in a timed public event (Simon Reinhard,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 194–236 ê 283
personal communication in the form of a conversation over
dinner in St. Louis, MO, on May 8, 2013, with Roddy Roedi-
ger and several other people).
25. Michela Seong- Hyun Kim’s description of her experience us-
ing mnemonics was relayed to Peter Brown by James Paterson
in private correspondence, February 8, 2013.
26. Peter Brown and Roddy Roediger interview of James Pater-
son, January 4, 2013, St. Louis, MO.
27. Peter Brown interview of Karen Kim, April 18, 2013, St.
Paul, MN.
8. Make It Stick
1. Peter Brown telephone interview of Michael Young, May 21,
2013. All quotes of Young are from this interview.
2. Peter Brown telephone interview of Stephen Madigan, May
20, 2013.
3. Peter Brown interview of Nathaniel Fuller, April 29, 2013,
Minneapolis, MN.
4. John McPhee, “Draft no. 4,” New Yorker, April 29, 2013,
32– 38.
5. Peter Brown interview of Thelma Hunter, April 30, 2013, St.
Paul, MN.
6. Peter Brown interview of Mary Pat Wenderoth, May 7,
2013, Seattle, WA.
7. The empirical studies aimed at testing the effects of high-
structure classes in reducing student attrition in gateway science
classes are S. Freeman, D. Haak, & M. P. Wenderoth, Increased
course structure improves per for mance in introductory biol-
ogy, CBE Life Sciences Education 10 (Summer 2011), 175–
186; also S. Freeman, E. O’Connor, J. W. Parks, D. H. Cunning-
ham, D. Haak, C. Dirks, & M. P. Wenderoth, Prescribed active
learning increases per for mance in introductory biology, CBE
Life Sciences Education 6 (Summer 2007), 132– 139.
8. Peter Brown telephone interview of Michael Matthews, May
2, 2013.
9. Peter Brown telephone interview of Kiley Hunkler, May 21,
2013.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Notes to Pages 237–251 ê 284
10. Peter Brown interview of Kathleen McDermott, June 20,
2013, Folly Beach, SC.
11. Peter Brown telephone interview of Kathy Maixner, July 18,
2013.
12. Peter Brown telephone interview of Kenneth Barber, July 1,
2013.
13. Peter Brown telephone interview of Richard Wynveen, July
17, 2013.
14. Peter Brown telephone interview of Erik Isaacman, June 2,
2013.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

285
Following are some readings to provide underpinnings for and
to further illustrate the principles we have described in this
book. These readings are just the tip of the iceberg; in the scien-
tifi c literature there are hundreds of papers addressing these
techniques. In the notes section, we provide references for stud-
ies and quotes that are included in the text so that readers
may delve deeper. We have tried to balance the need for more
information without affl icting the reader with paralyzing detail
about the studies.
Scholarly Articles
Crouch, C. H., Fagen, A. P., Callan, J. P., & Mazur, E. (2004).
Classroom demonstrations: Learning tools or entertain-
ment? American Journal of Physics, 72, 835– 838. An inter-
esting use of generation to enhance learning from classroom
demonstrations.
Suggested Reading
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Suggested Reading ê 286
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willing-
ham, D. T. (2013). Improving students’ learning with effective
learning techniques: Promising directions from cognitive and
educational psychology. Psychological Science in the Public
Interest 14, 4– 58. Describes techniques that research has
shown to work in improving educational practice in both
laboratory and fi eld (educational) settings, as well as other
techniques that do not work. Provides a thorough discussion
of the research literature supporting (or not) each technique.
McDaniel, M. A. (2012). Put the SPRINT in knowledge training:
Training with SPacing, Retrieval, and INTerleaving. In A. F.
Healy & L. E. Bourne Jr. (eds.), Training Cognition: Optimiz-
ing Effi ciency, Durability, and Generalizability (pp. 267– 286).
New York: Psychology Press. This chapter points out that
many training situations, from business to medicine to continu-
ing education, tend to cram training into an intensive several
day “course.” Evidence that spacing and interleaving would be
more effective for promoting learning and retention is summa-
rized and some ideas are provided for how to incorporate these
techniques into training.
McDaniel, M. A., & Donnelly, C. M. (1996). Learning with analogy
and elaborative interrogation. Journal of Educational Psychol-
ogy 88, 508– 519. These experiments illustrate the use of several
elaborative techniques for learning technical material, includ-
ing visual imagery and self- questioning techniques. This article
is more technical than the others in this list.
Richland, L. E., Linn, M. C., & Bjork, R. A. (2007). Instruction. In
F. Durso, R. Nickerson, S. Dumais, S. Lewandowsky, & T. Per-
fect (eds.), Handbook of Applied Cognition (2nd ed., pp. 553–
583). Chichester: Wiley. Provides examples of how desirable
diffi culties, including generation, might be implemented in in-
structional settings.
Roediger, H. L., Smith, M. A., & Putnam, A. L. (2011). Ten benefi ts
of testing and their applications to educational practice. In B.
H. Ross (ed.), Psychology of Learning and Motivation. San
Diego: Elsevier Academic Press. Provides a summary of the
host of potential benefi ts of practicing retrieving as a learning
technique.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Suggested Reading ê 287
Books
Brooks, D. The Social Animal: The Hidden Sources Love, Character,
and Achievement. New York: Random House, 2011.
Coyle, D. The Talent Code: Greatness Isn’t Born. It’s Grown. Here’s
How. New York: Bantam Dell, 2009.
Doidge, N. The Brain the Changes Itself: Stories of Personal Triumph
from the Frontiers of Brain Science. New York: Penguin Books,
2007.
Duhigg, C. The Power of Habit: Why We Do What We Do in Life and
Business. New York: Random House, 2012.
Dunlosky, J., & Metcalfe, J. Metacognition. Los Angeles: Sage Publi-
cations, 2009.
Dunning, D. Self- Insight: Roadblocks and Detours on the Path to
Knowing Thyself (Essays in Social Psychology). New York:
Psychology Press, 2005.
Dweck, C. S. Mindset: The New Psychology of Success. New York:
Ballantine Books, 2008.
Foer, J. Moonwalking with Einstein: The Art and Science of Remem-
bering Everything. New York: Penguin, 2011.
Gilovich, T. How We Know What Isn’t So: The Fallibility of Human
Reason in Everyday Life. New York: Free Press, 1991.
Gladwell, M. Blink: The Power of Thinking Without Thinking. New
York: Little, Brown & Co., 2005.
––––. Outliers: The Story of Success. New York: Little Brown & Co,
2008.
Healy, A. F. & Bourne, L. E., Jr. (Eds.). Training Cognition: Optimizing
Effi ciency, Durability, and Generalizability. New York: Psychol-
ogy Press, 2012.
Kahneman, D. Thinking Fast and Slow. New York: Farrar, Straus
and Giroux, 2011.
Mayer, R. E. Applying the Science of Learning. Upper Saddle River,
NJ: Pearson, 2010.
Nisbett, R. E. Intelligence and How to Get It. New York: W. W.
Norton & Company, 2009.
Sternberg, R. J., & Grigorenko, E. L. Dynamic Testing: The Nature
and Mea sure ment of Learning Potential. Cambridge: Univer-
sity of Cambridge, 2002.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Suggested Reading ê 288
Tough, P. How Children Succeed: Grit, Curiosity, and the Hidden
Power of Character. Boston: Houghton Miffl in Harcourt, 2012.
Willingham, D. T. When Can You Trust the Experts: How to Tell
Good Science from Bad in Education. San Francisco: Jossey-
Bass, 2012.
Worthen, J. B., & Hunt, R. R. Mnemonology: Mnemonics for the
21st Century (Essays in Cognitive Psychology). New York:
Psychology Press, 2011.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

289
Writing this book was truly a joint enterprise. The authors
collaborated over a three year period in a most productive
way. Many people and organizations contributed helpful sup-
port and insights.
We acknowledge the James S. McDonnell Foundation of
St. Louis, Missouri, for their grant “Applying Cognitive Psy-
chology to Enhance Educational Practice” awarded to Henry
Roediger and Mark McDaniel, with Henry Roediger as the
principal investigator. This grant supported eleven researchers
who collaborated for ten years on research to translate cogni-
tive science into educational science. Many points in our book
come from the research the McDonnell Foundation supported.
We thank the other nine members of our group, from whom
we have learned much: Robert and Elizabeth Bjork of the
University of California at Los Angeles, John Dunlosky and
Katherine Rawson at Kent State University, Larry Jacoby of
Ac know ledg ments
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Ac know ledg ments ê 290
Washington University, Elizabeth Marsh of Duke University,
Kathleen McDermott of Washington University, Janet Met-
calfe at Columbia University, and Hal Pashler at the Univer-
sity of California at San Diego. We particularly thank John
Bruer, president of the McDonnell Foundation, and Susan
Fitzpatrick, vice president, for their guidance and support, as
well as the James S. McDonnell family.
We would also like to thank the Cognition and Student
Learning Program of the Institute for Education Sciences (U.S.
Department of Education) for a series of grants that have
aided research by Roediger and McDaniel in school settings,
in collaboration with Kathleen McDermott. The work we con-
ducted in Illinois at Columbia Middle School and Columbia
High School would not have been possible without this sup-
port. We thank our program offi cers at CASL, Elizabeth Albro,
Carol O’Donnell, and Erin Higgins. In addition, we thank
teachers, principals, and students at the Columbia Schools, in
par tic u lar, Roger Chamberlain (principal at Columbia Middle
School when we began our research there) and Patrice Bain,
the fi rst teacher who pioneered implementation of our research
in a classroom. Other teachers who permitted us to conduct
experiments in their classrooms include Teresa Fehrenz,
Andria Matzenbacher, Michelle Spivey, Ammie Koch, Kelly
Landgraf, Carleigh Ottwell, Cindy McMullan, Missie Steve,
Neal O’Donnell and Linda Malone. A great group of research
assistants has helped with this research, including Kristy Du-
prey, Lindsay Brockmeier, Barbie Huelser, Lisa Cressey, Marco
Chacon, Anna Dinndorf, Laura D’Antonio, Jessye Brick, Alli-
son Obenhaus, Meghan McDoniel, and Aaron Theby. Pooja
Agarwal has been instrumental in this project every step of
the way, leading the research on a day- to- day basis while she
was a graduate student at Washington University and then
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Ac know ledg ments ê 291
overseeing the project as a postdoctoral fellow. Many of the
practical suggestions in the book came from our classroom
experiments.
Dart NeuroScience of San Diego, California, supported
our research on memory athletes through a generous grant.
Roediger served as principal investigator and was joined
by David Balota, Kathleen McDermott, and Mary Pyc. We
tested several memory athletes in this project, and we appre-
ciate James Paterson for letting us use his story in the book.
We are especially grateful for the support of Tim Tully, Dart’s
chief scientifi c offi cer, who fi rst approached us with the idea
of identifying individuals with highly superior memory
abilities.
Our granting agencies were generous in their support, but
we provide the usual disclaimer that the opinions expressed
in this book are those of the authors and do not represent the
views of the James S. McDonnell Foundation, the Institute of
Education Sciences, the U.S. Department of Education, or Dart
NeuroScience.
Roediger and McDaniel would like to thank the many stu-
dents and postdoctoral fellows who worked with us and
helped with the projects described in this book. Graduate stu-
dents who worked with Roediger on relevant projects during
this period are Pooja Agarwal, Andrew Butler, Andy DeSoto,
Michael Goode, Jeff Karpicke, Adam Putnam, Megan Smith,
Victor Sungkhasettee, and Franklin Zaromb. Postdoctoral fel-
lows included Pooja Agarwal, Jason Finley, Bridgid Finn, Lisa
Geraci, Keith Lyle, David McCabe, Mary Pyc, and Yana
Weinstein. Research staff that worked on the project include
Jane McConnell, Jean Ortmann- Sotomayor, Brittany Butler,
and Julie Gray. Mark McDaniel would like to thank his stu-
dents who worked on research pertinent to this book: Aimee
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Ac know ledg ments ê 292
Calendar, Cynthia Fadler, Dan Howard, Khuyen Nguyen,
Mathew Robbins, and Kathy Wildman, and his research-
assistant staff, Michael Cahill, Mary Derbish, Yiyi Liu, and
Amanda Meyer. His postdoctoral fellows who worked on re-
lated projects were Jeri Little, Keith Lyle, Anaya Thomas, and
Ruthann Thomas.
We are indebted to those individuals from many walks of
life who shared their stories of learning and remembering to
help us illustrate the important ideas in this book. We thank
Ken Barber at Jiffy Lube International, Bonnie Blodgett, Mia
Blundetto, Derwin Brown, Matt Brown, Patrick Castillo, Vince
Dooley, Mike Ebersold, Nathaniel Fuller, Catherine Johnson,
Sarah Flanagan, Bob Fletcher, Alex Ford, Steve Ford, David
Garman, Jean Germain, Lucy Gerold, Bruce Hendry, Michael
Hoffman, Peter Howard, Kiley Hunkler, Thelma Hunter, Erik
Isaacman, Karen Kim, Young Nam Kim, Nancy Lageson,
Douglas Larsen, Stephen Madigan, Kathy Maixner, Michael
Matthews, Kathleen McDermott, Michael McMurchie and
Rick Wynveen at Renewal by Andersen, Jeff Moseley, James
Paterson and his students at Bellerbys College (Stephanie Ong,
Victoria Gevorkova, and Michela Seong- Hyun Kim), Bill
Sands, Andy Sobel, Annette Thompson and Dave Nystrom at
Farmers Insurance, Jon Wehrenberg, Mary Pat Wenderoth,
and Michael Young. We thank Lorri Freifeld at Training mag-
azine for introducing us to the leaders of exemplary corporate
training programs.
Several people kindly read earlier drafts of the book or se-
lected chapters. We thank Ellen Brown, Kathleen McDermott,
Henry Moyers, Thomas Moyers, and Steve Nelson. As is
customary in the sciences, fi ve of our peers from the scientifi c
community were recruited by our publisher to review the book
anonymously in manuscript: we thank the three who have
subsequently identifi ed themselves– Bob Bjork, Dan Schacter,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Ac know ledg ments ê 293
and Dan Willingham– and the two whose identities remain
unknown to us.
Finally, we thank Elizabeth Knoll, our editor, and the pro-
fessional staff at Harvard University Press for their insights,
guidance, and devotion to the quality of this book.
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Accessible information,
compared to available
information, 268n8
Achievement: attributions on,
180– 182; in science courses,
class structure affecting,
232– 234, 283n7
Achievement gap in the sciences,
on closing, 232– 234, 283n7
Acquired skill, learning as, 2
Agarwal, Pooja, 34
Alzheimer’s disease, 164
Ambiguity, hunger for narrative
in, 109– 112
Anagram solving: diffi culty
and working memory in,
91– 92, 270n17; distraction
of one- sided conversation
affecting, 109– 110; varied
practice in, 52– 53, 264– 265n6
Analogical transfer, 278n14
Analytical skills: and achievement
in science courses, 233; in
Bloom’s taxonomy of learning,
228; and intelligence, 148, 150
Andersen Windows and Doors,
247– 250
Anxiety in test taking, 91– 92
Application of learning, in
Bloom’s taxonomy of
learning, 228
Apprentice model in training, 127
Aristotle, 28
Artists, learning painting styles
of, 53– 54, 84, 265n7
Associative learning, 172
Index
295
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 296
Attitude: brain training affecting,
178; growth mindset in,
179– 183, 233, 281n16
Attributions of achievement and
failure, 180– 182
Auditory learning style, 143,
144, 145
Available information, compared
to accessible information,
268n8
Axons, 166, 169– 170; myelina-
tion of, 169, 170– 171, 178
Azimuth check, 21, 235– 236
Bach- y-Rita, Paul, 168– 169
Bacon, Francis, 28, 131,
274n1
Bain, Patrice, 33, 36
Barber, Ken, 246, 247, 284n12
Barnet, Ann, 173
Barnet, Richard, 173
Baseball training, 6– 7, 79– 81,
85, 86, 206, 268n9
Batting practice, 6– 7, 79– 81,
85, 86, 206
Beanbag study of motor skills
learning, 46, 51, 86, 263n1
Bellerbys College, 193, 211
Bias in hindsight, 115– 116,
273n11
Big lie technique, 116
Bird classifi cation, learning of,
54– 55, 84– 85
Bjork, Elizabeth, 69, 98, 266n12,
266– 267n2, 268n10, 270n19
Bjork, Robert, 69, 98, 111, 145,
266n12, 266– 267n2, 267n6,
268n10, 270n19
Blindness, sensory retraining in,
168, 169
Blink (Gladwell), 106
Blocked practice, 53, 65, 206,
207
Blodgett, Bonnie, 94– 98, 209,
270n18
Bloom, Benjamin, 228
Bloom’s taxonomy of learning,
228– 229, 232, 233
Blundetto, Frank, 68
Blundetto, Mia, 67– 68, 71– 72,
266n1
Braille, 168
Brain: changes in learning, 7,
199, 226; consolidation of
memory in, 20, 28, 49, 100,
172; encoding of information
in, 72– 73, 100, 267n3; frontal
lobes of, 170– 171; in habit
formation, 171– 172; in motor
learning, 51– 52, 264n5;
myelination of nerve fi bers in,
169, 170– 171, 178; neuro-
genesis in, 172; plasticity of,
66, 142, 164– 173, 184, 279n3;
remodeling in deliberate
practice, 184; training of,
176– 179
The Brain That Changes Itself
(Doidge), 168
Branson, Richard, 139, 140
Brazilian children with street
businesses, mathematical
abilities of, 149– 150, 276n10
Brooklyn Free School, 123
Brown, Matt, 1– 2, 10– 12, 19,
20, 197
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 297
Bruer, John T., 166, 167, 175
Business training methods, 50,
240– 252
Calibration of judgments of
learning, 4– 5, 125– 130,
210– 211; retrieval practice
and testing in, 125,
202– 203
California Polytechnic State
University, baseball training
in, 79– 81, 86
Carnahan, Mel, 108, 271n3
Carson, Kit, 165, 167,
279n2
Chamberlain, Roger, 33, 36– 37,
44– 45, 261n9
China Airlines incident,
106– 109, 271n3
Chugani, Harry T., 168
Chunking pro cess in habit
formation, 171, 198
Classical conditioning, 199
Climb for Memory Foundation,
164
Coaching methods. See Sports
training
Cognitive differences in
learning: for rule learners
and example learners,
155– 157, 278– 279n15;
and structure building,
153– 155
Cognitive psychology, 8
Columbia Public School
District (Illinois), 238– 239;
test- enhanced learning in, 20,
33– 37, 258n13, 260n8
Columbus State University,
212– 213
Common Core State Standards
Initiative, 238
Competence, overestimation
of, 104– 105, 121– 123, 124,
273n17
Comprehension: Bloom’s
taxonomy of learning on,
228; cues for judgment of,
126
Conceptual knowledge, 55,
84– 85, 265n8; compared to
factual knowledge, 55
Conditioning, classical, 199
Conformity of memory, social
infl uences on, 117
Connectome, 170
Consolidation of memory, 28,
49, 63, 73– 75, 100, 267n4;
neurogenesis in, 172; and
reconsolidation, 20, 74,
82– 83, 101, 268– 269n11;
in sleep, 63, 73, 267n4
Contagion of memory by social
infl uences, 117, 273n12
Contemporary Educational
Psychology, 14
Context of learning, 6; concrete
and personal, 11
Control, sense of, in growth
mindset, 179– 183
Cramming, 3, 31, 44, 48, 63,
203, 226
Creative intelligence, 148, 150
Creativity, 17– 18, 30
Crystallized intelligence, 147,
176
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 298
Culture of continuous improve-
ment in Andersen Windows
and Doors, 247– 250
Cumulative learning: fostered
by cumulative quizzing,
38– 39; 238; in Columbia
Public School District,
238– 239; as teaching strategy,
227; testing on, 238
Curse of knowledge, 115– 116,
119, 273n11, 273n16
Dartmouth College, 12, 257n5
Darwin Awards, 104
Delay of gratifi cation, 162– 163,
279n1
Deliberate practice, 183– 185,
281n20
Dellis, Nelson, 164, 166
Dendrites, 166, 169– 170
Desirable diffi culties in learning,
68– 69, 98, 160, 226– 228,
229, 266– 267n2
Developmental psychology, 8
Diffi culty of learning, 7,
67– 101; as desirable, 68– 69,
98, 160, 226– 228, 229,
266– 267n2; in jump school
training, 68– 78; in spaced
practice, 4, 47, 49, 81, 82,
205; and strength and
duration of memory, 9; for
students, 201; as teaching
strategy, 225– 228, 229; as
undesirable, 92, 98– 99
Discrimination skills, 65, 101;
in identifi cation of artists’
painting styles, 53– 54, 84,
265n7; in identifi cation of
birds, 54– 55, 84– 85; fostered
by interleaved and varied
practice , 53– 55, 65, 84– 85,
101
Disraeli, Benjamin, 109
Distortions of memory, 109– 118;
in false consensus effect, 117,
273n13; in familiarity, 116; in
fl ashbulb memories, 117– 118,
273n14; in hindsight bias,
115– 116, 273n11; in hunger
for narratives, 109– 112; in
hypnosis, 114, 272n9; in
imagination infl ation, 113,
272n7; in interference,
114– 115; in social infl uences,
116– 117; in suggestion,
113– 114
Doidge, Norman, 168
Donahue, Barney, 136– 137
Dooley, Vince, 60– 62, 120, 198,
222, 266n11
Dowling, Joe, 217
Dreaming, consolidation of
memory in, 267n4
Dunn, Kenneth, 144
Dunn, Rita, 144
Dunning, David, 109, 121, 122,
126, 273n17
Dunning- Kruger effect, 121,
273n17
Dweck, Carol, 92, 139,
179– 183, 233, 281n16
Dynamic testing, 151– 152, 159,
277n12; steps in, 152
Dyslexia, 139– 140, 141– 143,
159, 275nn3– 4
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 299
Early education programs,
intelligence quotient changes
in, 175– 176
Ebersold, Mike, 23– 27, 29, 59,
120, 127, 155, 198, 222,
259n1
Edison, Thomas, 93
Effort: advanced learning in, 7;
brain changes in, 199, 226;
conceptual learning in, 84– 85;
and desirable diffi culties in
learning, 68– 69, 98, 160,
226– 228, 229, 266– 267n2;
failure attributions affecting,
180– 182; and generation
effect, 32; in growth mindset,
179, 180– 181; in interleaved
practice, 47, 50, 81, 207;
mastery in, 83– 84; mental
models in, 83, 101; in
per for mance goals and
learning goals, 180– 181;
praise affecting, 181– 182;
reconsolidation of memory in,
82– 83; in retrieval practice,
41, 43, 79, 203, 262n14; in
spaced practice, 4, 47, 49, 81,
82, 205; and strength and
duration of memory, 9, 49; in
student learning, 201; teacher
explanations of, 225– 226; in
varied practice, 47, 81
Einstein, Albert, 17
Elaboration pro cess, 5– 6,
36, 207– 208; in Andersen
Windows and Doors, 250;
in football training, 62; of
lifelong learners, 219,
223– 225; of medical student,
214, 215; in refl ection,
209– 210; with summary
sheets, 208, 231; as teaching
strategy, 208, 227, 231
Embedded questions, benefi ts of
to low structure- builders,
155, 277n13
Empirical research on learning, 9
Encoding pro cess, 72– 73, 100,
267n3
Environmental infl uences on
intelligence quotient, 173– 176
Ericsson, Anders, 92– 93, 183,
184– 185, 195, 224, 281n20
Erie Lackawanna railroad,
137– 138
Errorless learning, 90, 270n16;
myth of, 90– 94
Errors, 90– 94; of blundering
gardener, 94– 98; feedback
on, 39– 40, 44, 90, 101;
and Festival of Errors, 93;
generative learning in, 94– 98;
in illusion of knowing,
102– 130; and intellectual
abilities, 7, 92; in retrieval
practice, 202; in social
contagion of memory, 117
Evaluation skills, in Bloom’s
taxonomy of learning,
229
Example learning, 160;
compared to rule learning,
155– 157, 278– 279n15
Experience, learning from, 66,
133; generation effect in,
208– 209; on investment
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 300
Experience (continued)
strategies, 132– 139, 152; in
medical education, 58– 59
Expert per for mance, 92– 93;
deliberate practice for,
183– 185; mental models in,
83; self- discipline, grit, and
per sis tence required for, 182,
183, 199
Explicit memory, 56
Failure: attributions of, 180– 182;
and errorless learning, 90– 94;
fear of, 91– 92; as source of
inspiration, 93
False consensus effect, 117,
273n13
False memories, 267n3
Familiarity: continuing practice
in, 64; feeling of knowing in,
116; judgment of learning in,
126
Farmers Insurance training
program, 50, 241– 244
Far Side cartoons, 5
Feedback, 261n12; in Andersen
Windows and Doors training,
248; delayed and immediate,
comparison of, 39– 40; on
errors, 39– 40, 44, 90, 101;
in Jiffy Lube University, 245,
246; judgment of learning
based on, 122, 126– 127; lack
of, overestimation of compe-
tence in, 122; in motor
learning, 40, 261n12
Fellows, Timothy, 216– 217
Festival of Errors, 93
Firearms training, simulations
in, 128– 130
Fire extinguisher location test,
13, 258n7
Fire hose method of instruction,
10, 12
First RepublicBank of Texas,
138
Flashbulb memories, 117– 118,
273n14
Flashcards: in retrieval practice,
3, 204; in spaced practice,
64, 204; in student- directed
learning, 44, 124, 274n19;
in varied practice, 65– 66
Fleming, Neil, 144
Flight simulator training, 11– 12
Fluency: illusion of mastery in,
17, 82, 116, 202, 210;
judgment of learning in, 126;
in language, 141
Fluid intelligence, 146– 147,
176– 178
Flynn, James, 280n11
Flynn effect, 173, 280n11
Foer, Joshua, 194– 195
Football coaching and training,
60– 62, 120, 124, 198;
refl ection in, 62, 222
Forgetting, 267n3; as aid
in new learning, 77– 78,
267– 268nn6–7; curve of,
28, 259n2; in massed
practice, 47, 48; in medical
education, 59– 60; in reassign-
ment or disuse of retrieval
cues, 77– 79; of short- term
memory, 72– 73, 100; in
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 301
spaced practice, 63, 82;
testing affecting, 30– 32, 39,
259– 260n6
Fortune magazine, 139, 142
Fremont, John, 165, 167
Frontal lobes, 170– 171
Fuller, Nathaniel, 217– 220, 239,
283n3
Gardening, generative learning
about, 94– 98, 209
Gardner, Howard, 147– 148,
275n8
Garman, David, 103, 222, 271n2
Geiger, Gadi, 142
Generation effect, 32, 87– 88,
94– 98, 208– 209, 260n7,
269n14; in Andersen Win-
dows and Doors, 250; for
blundering gardener, 94– 98,
209; for lifelong learners,
220– 222; as teaching strategy,
227
Ge ne tic infl uences, 7, 163, 165;
on brain structure, 165, 168,
170; on intellectual abilities,
92, 173, 174, 178
George Mason University, 12,
257n4
Georgia Regents University,
211, 213
Gladwell, Malcolm, 106
Goals: in deliberate practice,
183; on per for mance and
learning, comparison of,
180– 181
Goldman- Rakic, Patricia, 167,
279n3
Gratifi cation, delay of, 162– 163,
279n1
Gray matter, 169– 170
Grigorenko, Elena, 151, 277n12
Growth mindset, 179– 183,
281n16; and achievement in
science courses, 233
Habit formation, chunking
pro cess in, 171– 172
Habit strength, 65; compared
to momentary strength, 63,
266n12
Handicapping of horse races,
mathematics and IQ in, 150,
276– 277n11
Harris, Carol, 113, 272n6
Hendry, Bruce, 131, 132– 139,
152, 158, 160, 275n2
Hendry, Doris, 132
Highest Duty (Sullenberger),
223
Hindsight bias, 115– 116,
273n11
Hippocampus, 172
Hockey training, 52, 65
Honey and Mumford Learning
Styles Questionnaire, 144
Horse race handicapping,
mathematics and IQ in, 150,
276– 277n11
How Children Succeed (Tough),
182
Human Connectome Project, 170
Hunkler, Kiley, 21, 235– 236,
283n9
Hunter, Thelma, 223– 225,
283n5
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 302
Hypnosis, memory distortion in,
114, 272n9
Ice hockey training, 52, 65
Illusion of knowing, 15– 17, 21,
81, 102– 130, 210, 258n11,
274n23; automatic System 1
and controlled System 2 in,
105– 109; in brain training
exercises, 178; distortion of
memory in, 109– 118; in
fl uency, 17, 82, 116, 202,
210; in massed practice, 82;
in rereading, 15– 16, 17, 116;
teaching strategies in, 229,
230; testing in, 4– 5, 16, 17,
116, 210
Imagery as memory cues,
186– 188, 193– 194, 195– 196,
211, 224, 281– 282n21
Imagination infl ation, distortion
of memory in, 113, 272n7
Implicit memory, 56
Indigenous knowledge, compared
to academic knowledge,
148– 149
Induction abilities, 101
Inner Gate Acu punc ture, 240,
250– 252
In- service training, 239– 240
Instructional styles, 145– 146,
275n6. See also Teaching
methods
Intellectual abilities, 7, 165,
173– 183; control of, 7, 92;
environmental factors
affecting, 173– 176; and fear
of failure, 92; ge ne tic
infl uences on, 92, 173, 174,
178; growth mindset on,
179– 183; as hardwired, 7,
165, 166, 226
Intelligence, 146– 150, 159,
275nn7– 8; brain training
exercises affecting, 176– 179;
crystallized, 147, 176; fl uid,
146– 147, 176– 178; mea sure-
ment of, 147, 148– 149;
multiple types of, 147– 148,
275n8; Sternberg model on,
148– 150
Intelligence and How to Get
It (Nisbett), 173, 280n12
Intelligence quotient, 147, 165,
173– 176; environmental
factors affecting, 173– 176;
Flynn effect in, 173, 280n11;
and horse race handicapping
ability, 150, 276– 277n11
Interference, 114– 115; learning
benefi ts of, 86– 87, 269n13
Interleaved practice, 4, 49– 50,
64– 65, 66, 205– 207, 269n12;
on bird identifi cation, 55,
84– 85; conceptual learning
in, 84– 85; consolidation of
memory in, 75; of discrimina-
tion skills, 53– 55, 65, 84– 85,
101; effort in, 47, 50, 81,
207; in Farmers Insurance,
50, 242– 244; of football
team, 61, 62; habit strength
in, 63, 65; of lifelong learners,
219, 220; massed practice
compared to, 47, 49, 50,
53– 55, 206– 207, 263– 264n2;
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 303
mastery in, 83, 84; on
mathematics problems,
49– 50, 264n4; in medical
education, 58; in military
jump school training, 71;
on motor skills, 65, 80, 206;
on painting style of artists,
53– 54, 84, 265n7; in pi lot
training, 12; for spacing
retrieval practice, 204; as
study strategy, 205– 207; as
teaching strategy, 228
Interpersonal intelligence, 147
Intrapersonal intelligence, 147
Investment strategies, learning
about, 132– 139, 152, 158
Isaacman, Erik, 250– 252, 284n14
Jacoby, Larry, 111
James, William, 28
Jiffy Lube University, 245– 247
Jobs, Steve, 93– 94
Johnson, Catherine, 128– 129
Judgments of learning, 3, 4– 5,
125– 130, 159; calibration of,
4– 5, 125– 130, 210– 211; cues
in, 126; feedback in, 126– 127;
illusion of knowing in (See
Illusion of knowing); overesti-
mation of competence in,
104– 105, 121– 123, 124,
273n17; in peer instruction,
125– 126; in student- directed
learning, 124; testing affect-
ing, 4– 5, 16, 17, 125, 202– 203
Jump school training in military,
67– 78; smoke jump training
after, 78
Kahneman, Daniel, 105, 108, 123
Kaiser Steel, 138
Kaizen events, 248– 249
Keller, Helen, 112– 113, 272n6
Kelley, Colleen, 111
Kennedy, John F., 117
Kennedy, John F., Jr., 108, 271n3
Kenya, indigenous and academic
knowledge of children in,
148– 149
Kim, Karen, 197– 198
Kim, Michela Seong- Hyun,
193– 194, 283n25
Kinesthetic intelligence, 147
Kinesthetic learning style,
143, 144
Kinko’s, 140
Knew- it- all- along effect, 116
Knowledge: available and
accessible information in,
268n8; in Bloom’s taxonomy
of learning, 228; conceptual,
55, 84– 85, 265n8; and
creativity, 17– 18, 30; curse
of, 115– 116, 119, 273n11,
273n16; illusion of (See
Illusion of knowing);
indigenous and academic,
comparison of, 148– 149; and
mastery, 18; and overestima-
tion of competence, 104– 105,
121– 123, 124, 273n17;
required for new learning, 5,
100; retrieval cues of, 76– 79;
System 1 and System 2 in,
105– 109, 115
Kompon, Jamie, 52
Kruger, Justin, 121, 122, 273n17
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 304
Language fl uency, 141
Larsen, Douglas, 56, 59, 60, 64,
66, 155, 239, 265– 266n10
Larson, Gary, 5
LaRussa, Tony, 140– 141
Learning and Skills Research
Centre, 143, 275n5
Learning goals, compared to
per for mance goals, 180– 181
Learning paragraphs, 89, 210,
232
Learning styles, 4, 94, 131– 132,
139– 146, 275nn5– 6; dynamic
testing compared to, 151; in
dyslexia, 139– 140, 141– 143;
and instructional styles,
145– 146, 275n6; structure
building compared to, 153;
VARK approach to, 144
Learning theories, 8– 17
Learning tips: for students,
201– 217; for lifelong
learners, 217– 225
Leitner, Sebastian, 64
Leitner box, 64
Leonetti, Oliver, 250, 251, 252
Leppla, Sam, 135– 137
Lettvin, Jerome, 142
Lifelong learners, 2, 217– 225;
elaboration by, 219, 223– 225;
generation by, 220– 222;
refl ection by, 222– 223;
retrieval practice of, 217– 220
Linguistic intelligence, 147
Logical- mathematical intelli-
gence, 147
Long- term memory, 49, 73, 82,
100; consolidation of, 73– 75
Madigan, Stephen, 216, 283n2
Maixner, Kathy, 240– 241, 251,
284n11
Maixner Group, 240
Mallow, Johannes, 196
Manhattan Free School, 123
Massachusetts Institute of
Technology, 142
Massed practice, 3, 9– 10, 63;
on bird identifi cation, 55;
cramming as, 3, 31, 44, 48,
63, 203, 226; fast gains in,
9– 10, 47, 125; illusion of
mastery in, 82; interleaved
practice compared to, 47,
49, 50, 53– 55, 206– 207,
263– 264n2; of motor skills,
52, 80, 81; myth of, 47– 48;
on painting style of artists,
53– 54, 265n7; retrieval
practice compared to, 31,
44, 203, 261n11; short- term
memory in, 82; spaced
practice compared to, 47,
48, 49, 204– 205, 263–
264n2; varied practice
compared to, 47, 53– 55
Mastery, 159; components
of, 18; deliberate practice
for, 183– 185; in effort,
83– 84; illusion of, 4– 5,
15– 17 (See also Illusion
of knowing); in medical
education, 56– 60; mental
models in, 118– 120
Mathematics: of Brazilian
children with street busi-
nesses, 149– 150, 276n10; in
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 305
horse race handicapping, 150,
276– 277n11; interleaved
practice on, 49– 50, 264n4;
massed practice on, 53
Matthews, Michael D., 126,
234– 236, 283n8
Mazur, Eric, 119, 125– 126,
273n15
McCaw, Craig, 139– 140
McDaniel, Mark, 145
McDermott, Kathleen, 227,
236– 238, 284n10
McPhee, John, 220– 222, 224,
225
Medical education, 56– 60,
211– 215; complex mastery in,
56– 60; in- service training in,
239; practical experience in,
58– 59; refl ection in, 26– 27,
59, 215, 222; retrieval practice
in, 23– 27, 29, 57– 58, 60, 212,
213– 215; spaced practice in,
48– 49, 212, 214– 215, 264n3;
testing in, 57, 60, 213, 214,
265– 266n10
Memory, 2; in associative
learning, 172; consolidation
of (See Consolidation of
memory); distortions of
(See Distortions of memory);
effort of learning affecting, 9,
49; in elaboration, 207– 208;
encoding of information in,
72– 73, 100, 267n3; explicit,
56; false, 267n3; false
consensus effect on, 117,
273n13; familiarity affecting,
116; fl ashbulb, 117– 118,
273n14; in fl uency, 116; and
fl uid intelligence, 176– 178;
and forgetting curves, 28,
259n2; generation effect in,
32, 87– 88, 269n14; hindsight
bias affecting, 115– 116,
273n11; hypnosis affecting,
114, 272n9; imagination
infl ation affecting, 113,
272n7; implicit, 56; interfer-
ence affecting, 114– 115;
long- term, 49, 73– 75, 82, 100;
mental models in, 118– 120;
with mnemonic devices,
163– 164, 185– 198 (See also
Mnemonic devices); momen-
tary and habit strength of, 63,
266n12; narratives affecting,
109– 112; in retrieval practice,
3– 4, 19– 20, 75– 76; short- term,
49, 72– 73, 75, 82, 90, 100;
social infl uences on, 116– 117,
273n12; in spaced practice,
63, 82, 205; suggestion
affecting, 113– 114; testing
strengthening, 19– 20, 29,
30– 32, 39, 259n5, 261n11;
working (See Working
memory)
Memory athletes, 164, 166,
193, 194– 197, 282– 283n24
Memory cues, 185– 198. See
also Mnemonic devices
Memory palaces, 185– 186,
191– 194, 211
Memory span, 196
Memory traces, 72; consolida-
tion of, 73– 75
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 306
Mental models, 6– 7, 83, 101,
118– 120, 257n1; structure
building in, 153
Mentors, 140
Metacognition, 16, 102, 121,
169, 270– 271n1
Method of loci, 185– 186
Michelangelo, 184
Military jump school training,
67– 78; smoke jump training
after, 78
Mischel, Walter, 162, 279n1
Mnemonic devices, 163– 164,
185– 198, 211; in Farmers
Insurance training, 243, 244;
historical, 189, 282n23;
memory palaces as, 185– 186,
191– 194, 211; mental
imagery as, 186– 188,
193– 194, 195– 196, 211, 224,
281– 282n21; of psychology
students, 163, 186, 191– 194,
211; rhyme schemes as,
188– 189; songs as, 189;
visual imagery as, 187– 188,
193– 194, 195– 196, 211,
282n22
Momentary strength, compared
to habit strength, 63, 266n12
Moonwalking with Einstein
(Foer), 195
Morris, Errol, 109, 126
Motor skills, 40; beanbag study
of, 46, 51, 86, 263n1;
feedback on, 40, 261n12; in
habit formation, 171– 172;
interleaved practice of, 65,
80, 206; massed practice of,
52, 80, 81; varied practice
of, 46, 51– 52, 264n5
Mozart, 184
Multiple- choice tests, 41,
261n12, 262n14
Multiple intelligences, 147– 148,
275n8
Musical intelligence, 147
Myelin, 169, 170– 171, 178,
280n8
Narratives, 109– 113, 140
National Institutes of Health
Human Connectome Project,
170
Naturalistic intelligence, 148
Ner vous system: axons and
dendrites in, 166, 169– 171,
178; brain in (See Brain); in
habit formation, 171– 172;
myelination of, 169, 170– 171,
178, 280n8; neurogenesis in,
172; synapses in, 166– 167,
170
Neurogenesis, 172
Neurons, 166; generation of,
172; synapses of, 10,
166– 167
Neuroplasticity, 66, 142,
164– 173, 184, 279n3
Neuroscience, 8; plasticity of
brain in, 164, 166– 173
New Yorker, 220
New York Times, 29, 109, 169
Nisbett, Richard, 173, 178,
280n12
Nutrition, and intelligence
quotient, 174– 175
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 307
Open- book testing, 40,
261– 262n13
Orfalea, Paul, 140
Osmosis social- learning
platform, 240
Painting style of artists, inter-
leaved and massed practice in
identifi cation of, 53– 54, 84,
265n7
Paivio, Allan, 281– 282n21
Pashler, Harold, 145, 146
Paterson, James, 163– 164,
166, 193– 197, 282– 283n24
Peer instruction, 125– 126; in
testing groups, 230– 231
Peer review, 127
Penny memory test, 12– 13,
258n7
Per for mance: attributions of,
180– 182; in deliberate
practice, 183– 185; expert
(See Expert per for mance);
goals on, compared to learning
goals, 180– 181; in growth
mindset, 179– 183; self-
discipline, grit, and per sis tence
required for, 182, 183, 199
Pi lot training, 1– 2, 10– 12, 19,
169; and China Airlines
incident, 106– 109, 271n3;
refl ection in, 223; testing as
retrieval practice in, 20
Plant classifi cation, learning of,
96– 98
Plasticity of brain, 66, 142,
164– 173, 279n3; in deliber-
ate practice, 184
Police training: refl ection in,
222; simulations on fi rearm
use in, 128– 130
Polk, James, 165, 167
Practical intelligence, 148, 150
Practice like you play. See
Simulation training
Praise, and response to chal-
lenges, 181– 182
Priming the mind for learning,
86. See also Generation effect
Prior knowledge as foundation
for new learning, 5, 100
Problem solving, 4, 278n14;
effort in, 86, 181– 182; errors
in, 91– 92, 101; generation
effect in, 87– 88, 94, 208– 209;
interleaved practice in, 49– 50,
264n4; mental models in, 120;
praise affecting, 181– 182; by
rule learners and example
learners, 156– 157; transfer
of learning in, 157, 278n14
Proust, Marcel, 79
Psychology students, 211;
illusion of mastery of, 16;
mnemonic devices used by,
163, 186, 191– 194, 211;
spaced retrieval practice of,
216– 217; writing- to- learn
strategy used by, 89– 90
Qstream training platform, 240
Quizzing. See Testing
Reading: ability in, 141; in
dyslexia, 139– 140, 141– 143;
generation effect in, 209;
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 308
Reading (continued)
and intelligence quotient
changes, 175– 176; interfer-
ence as learning aid in, 86– 87,
269n13; and rereading (See
Rereading); in VARK approach
to learning styles, 144
Reagan, Ronald, 24
Recitation, compared to
rereading, 30
Reconsolidation of memory, 20,
74, 82– 83, 101, 268– 269n11
Refl ection, 26– 27, 66, 88– 90,
209– 210; in football training,
62, 222; of lifelong learners,
222– 223; in medical educa-
tion, 26– 27, 59, 215, 222; in
pi lot training, 223; in police
training, 222; structure
building in, 155; with
write- to- learn and learning
paragraphs, 89– 90, 210,
232, 269n15
Refl exive actions: automatic
System 1 in, 105– 106, 107,
108, 115; neural circuits
in, 171; repetitive practice
required for, 25, 27
Rehearsal practice: of football
team, 61– 62; as spaced
practice, 76
Reinhard, Simon, 282– 283n24
Reloading learning, 82, 268n10
Remembrance of Things Past
(Proust), 79
Renewal by Andersen, 247– 250
Repetition: in football practice,
61; illusion of mastery in,
15– 16; lack of learning in,
12– 16, 258n7; in massed
practice, 3, 9– 10; of reading
(See Rereading); of retrieval
practice, 28– 29, 31– 32, 43;
study advice on, 12, 204– 205;
of testing, 31– 32, 44, 125,
203– 204, 263n17
Rereading, 3, 10, 14– 16,
258nn9– 10; fl uency in, 17,
116, 202; illusion of knowing
in, 15– 16, 17, 116; of medical
student, 214; recitation
compared to, 30; retrieval
practice and testing compared
to, 41, 42, 44, 202– 203;
spaced practice in, 14, 15
Retrieval cues, 75, 76– 79, 100,
267n5; and accessible
information, 268n8; and
distortions of memory, 112
Retrieval practice, 3– 4, 11– 12,
23– 45, 75– 76, 100; in
Columbia Public School
District, 34, 36, 238; in
commercial training, 240;
consolidation of memory in,
74; effort in, 41, 43, 79, 203,
262n14; of football team, 62;
in free recall exercise, 231;
with learning paragraphs,
89, 232; of lifelong learners,
217– 220; long- term benefi ts
of, 35, 39, 44; massed
practice compared to, 31, 44,
203, 261n11; mastery in, 83;
in medical education, 23– 27,
29, 57– 58, 60, 212, 213– 215;
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 309
neurogenesis in, 172; of
psychology student, 216– 217;
refl ection in (See Refl ection);
repetition of, 28– 29, 31– 32,
43; rereading compared to,
41, 42, 44, 202– 203; spaced
out, 32, 43, 203– 205; in
student- directed learning,
124; as study technique, 41,
201– 205, 262n15; as teaching
strategy, 227, 229– 230, 231,
235; testing as, 19– 20, 28– 44,
201– 203. See also Testing
Retrieval strength, 266n12
Rhyme schemes as memory
cues, 188– 189
Riverside Military Academy, 236
Rohrer, Doug, 145
Role- playing in business
coaching, 241, 252
Rule learning, 133; compared to
example learning, 155– 157,
278– 279n15; and structure
building, 157
Rumsfeld, Donald, 17
Schema induction, 278n14
Science courses: achievement
gap in, 232– 234, 283n7; in
Columbia Public School
District, 238– 239
Self- directed learning, 123– 124,
274n18; fl ashcards in, 44,
124, 274n19
Sensory skill retraining, 168– 169
September 11th terrorist
attacks, fl ashbulb memories
of, 118, 273n14
Shooting an azimuth, testing as,
21, 235– 236
Short- answer tests, 41, 262n14
Short- term memory, 49, 72– 73,
75, 82, 100; encoding of
information in, 100; forgetting
of, 72– 73, 100; in massed
practice, 82; retrieval from,
90, 100
Simulation training: in football
practice, 61– 62; in Jiffy Lube
University, 246; in military
jump school training, 61– 72;
in medical school, 57– 58; of
pi lots, 11– 12, 20; of police,
128– 130; practice like you
play, 57– 58, 85– 86, 130;
role- play as simulation, 241,
243– 244, 252
Skinner, B. F., 90, 270n16
Sleep, consolidation of memory
in, 63, 73, 267n4
Smoke jump training, 78
Sobel, Andrew, 37– 39, 64, 125,
227, 261n10
Social contagion of memory,
117, 273n12
Social infl uences on memory,
116– 117
Socioeconomic status, and
intelligence quotient, 174,
175
Songs, as mnemonic devices, 189
Spaced practice, 4, 48– 49, 66,
203– 205; in baseball training,
80; in commercial training,
240; consolidation of memory
in, 63, 75, 82; effort in, 4, 47,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 310
Spaced practice (continued)
49, 81, 82, 205; fl ashcards
in, 64, 204; of football team,
61– 62; forgetting in, 63,
82; habit strength in, 63;
interleaving in, 64; of lifelong
learners, 219, 220; massed
practice compared to, 47, 48,
49, 204– 205, 263– 264n2; in
medical education, 48– 49,
212, 214– 215, 264n3; in
military jump school training,
71; neurogenesis in, 172; in
pi lot training, 12; of medical
student, 213– 215; of psychol-
ogy student, 217; rehearsal in,
76; reloading in, 82, 268n10;
in rereading, 14, 15; strength
of learning in, 48; as study
strategy, 203– 205; as teaching
strategy, 228; in testing, 32,
40, 43; time between sessions
in, 63
Spatial disorientation of pi lots,
108, 271n3
Spatial intelligence, 147
Spivey, Michelle, 36
Sports training: for baseball, 6– 7,
79– 81, 85, 86, 206, 268n9; for
football, 60– 62, 120, 124, 198,
222; for ice hockey, 52, 65;
interleaved practice in, 61, 62,
65, 80, 206; massed practice
in, 52, 80, 81; practice like
you play in, 85– 86; retrieval
practice in, 62
Standardized testing, 18, 19,
30, 151
Sternberg, Robert, 18, 148– 151,
276n9
Structure building, 133,
153– 155, 160– 161, 277n13;
in refl ection, 155; and rule
learning, 157
Students, 201– 217; in medical
education, 211– 215 (See also
Medical education); in peer
instruction, 125– 126,
230– 231; in psychology
course, 16, 89– 90, 163, 186,
190– 194, 216– 217; refl ection
of, 209– 210; retrieval practice
of, 201– 205; self- directed
learning of, 123– 124, 274n18;
spaced practice of, 203– 205;
study techniques of (See Study
techniques); tips for teachers
of, 225– 239
Study techniques, 16, 201– 217;
calibration of judgment in,
210– 211; elaboration in,
207– 208, 214, 215, 227,
231; generation in, 208– 209;
interleaved practice in,
205– 207; massed practice or
cramming in, 3, 9– 10, 31, 44,
48, 63, 203, 226; of medical
students, 211– 215 (See also
Medical education); mnemonic
devices in, 186, 190– 194,
196– 197, 211; of psychology
students, 16, 89– 90, 163,
186, 190– 194, 211, 216– 217;
refl ection in, 209– 210;
rereading in, 42, 202; retrieval
practice and testing in, 41,
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 311
201– 205, 262n15; spaced
practice in, 203– 205; in
student- directed learning,
124; teacher explanations
on, 226
Study tips: for students,
201– 217; for lifelong
learners, 217– 225
Suggestion, distortion of
memory in, 113– 114
Sullenberger, Chesley, 223
Summary sheets, 208, 231
Surgical training: refl ection in,
26– 27; retrieval practice in,
23– 27, 29; spaced practice
in, 48– 49, 264n3
Swonk, Diane, 139
Synapses: formation of,
166– 167; pruning of, 167;
structures in twins, 170
Synthesis of knowledge, in
Bloom’s taxonomy of
learning, 229
Teaching methods, 225– 239; for
achievement in science courses,
232– 234, 283n7; in Columbia
Public School District
(Illinois), 33– 37, 238– 239;
fi re hose instruction in, 10,
12; learning paragraphs in,
89, 210, 232; and learning
styles, 145– 146, 275n6; of
Matthews, 234– 236; of
McDermott, 227, 236– 238;
in medicine, 57– 60; peer
instruction in, 125– 126,
230– 231; of Sobel, 37– 39,
64, 125, 227; summary sheets
in, 208, 231; Thayer method,
234, 236; transparency in,
228, 229– 230, 237; of
Wenderoth, 89, 208, 210,
228– 234, 236
Teams, complementary areas of
expertise in, 127– 128
Testing, 4– 5, 19– 20; anxiety in,
91– 92; benefi ts of, 42– 43, 44,
125, 202– 203, 263n17; in
Columbia Public School
District, 20, 33– 37, 238,
258n13, 260n8; in commer-
cial training, 240; cramming
for, 3, 31, 44, 48, 63, 203,
226; delayed, 43; dynamic,
151– 152, 159, 277n12; errors
in, 39– 40, 44, 91; as false
mea sure of ability, 19;
familiarity affecting, 64; fear
of failure in, 91– 92; feedback
on answers in, 39– 40, 44;
frequency of, 44, 125,
203– 204, 263n17; in illusion
of mastery, 4– 5, 16, 17, 116,
210; in intelligence mea sure-
ment, 147, 148– 149; in Jiffy
Lube University, 245, 246; in
jump school training, 69– 70,
72; in learning style research,
145; as learning tool, 19– 20,
31, 125, 201– 205,
258– 259nn13–14; massed
practice or cramming for,
3, 31, 48, 63; in medical
education, 57, 60, 213, 214,
265– 266n10; memory cues
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 312
Testing (continued)
in preparation for, 186,
190– 194, 196– 197, 211;
multiple- choice tests in, 41,
261n12, 262n14; open- book,
40, 261– 262n13; overestima-
tion of competence in,
121– 122; and peer instruc-
tion in groups, 230– 231; in
psychology course, 16, 90,
186, 190– 194, 216, 217;
recall of information after,
19– 20, 29, 30– 32, 259n5;
repetition of, 31– 32, 44, 125,
203– 204, 263n17; rereading
compared to, 41, 42, 44,
202– 203; rereading
in preparation for, 14, 15;
restudying missed material in,
42, 211; as retrieval practice,
19– 20, 28– 44, 201– 203; as
shooting an azimuth, 21,
235– 236; short- answer tests
in, 41, 262n14; in spaced
practice, 203– 204, 205;
standardized, 18, 19, 30,
151; student attitudes toward,
42; in student- directed
learning, 123– 124; taxonomy
of learning levels in, 232; as
teaching strategy, 226– 227,
232, 234– 235, 236– 238; in
Thayer method, 234, 236.
See also Retrieval practice
Testing effect, 19– 20, 28– 44,
212, 240
Testing groups, 230– 231
Thayer, Sylvanus, 234
Thayer method, 234, 236
Thinking, Fast and Slow
(Kahneman), 105
Thomson, Donald M., 115,
272n10
Time between practice sessions,
4, 48– 49; 203– 204, 215.
See also Spaced practice
Tips for lifelong learners,
217– 225; for students,
201– 217; for teachers,
225– 239; for trainers,
239– 252
Tough, Paul, 182– 183
Toyota Motor Company, 249
Training methods, 239– 252;
of Renewal by Andersen,
247– 250; of Farmers
Insurance, 50, 241– 244;
in- service training in,
239– 240; of Jiffy Lube,
245– 247; of Inner Gate
Acu punc ture, 250– 252; of
Maixner Group, 240– 241;
for pi lots (See Pi lot training);
for police, 128– 130, 222; in
sports (See Sports training)
Transfer of learning, 85– 86,
157, 278n14
Transparency in teaching
strategies, 228, 229– 230,
237
Tulving, Endel, 13– 14, 258n8,
259n6, 267n5
Twain, Mark, 187– 188, 194,
211, 282n22
Twin studies on neural circuitry,
170
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Index ê 313
Undesirable diffi culties, 92,
98– 99
United States Military Academy
at West Point, 234– 236
University of California, Los
Angeles, 170
University of Georgia, 60,
222
University of New Mexico,
14
University of Southern Califor-
nia, 216
University of Washington,
228
Varied practice, 4, 51– 53, 65– 66;
anagram study of, 52– 53,
264– 265n6; beanbag study
of, 46, 51; of bird identifi ca-
tion, 55; of cognitive skills,
52– 53; of discrimination
skills, 53– 55, 101; effort in,
47, 81; of football team, 61,
62; habit strength in, 63, 65;
of lifelong learners, 219;
massed practice compared
to, 47, 53– 55; mastery in,
84; in medical education, 58;
of motor skills, 46, 51– 52,
264n5; in pi lot training, 12;
as teaching strategy, 228;
transfer of learning in,
85– 86
VARK approach to learning
styles, 144
Virgin Atlantic Airways, 139
Virgin Rec ords, 139
Visual images as memory cues,
186– 188, 193– 194, 195– 196,
211, 224, 281– 282n21
Visual learning style, 144, 145
Washington University, 14, 209,
236; Medical School of, 56
Weatherford, Jack, 189
Wehrenberg, Jon, 36
Wenderoth, Mary Pat, 126, 208,
228– 234, 236, 283n6; class
structure used by, 232– 233,
236; learning paragraphs used
by, 89, 210, 232; summary
sheets used by, 208, 231
West Point Military Academy,
234– 236
White matter, 169– 170
Working memory: in brain
training exercises, 176, 177;
capacity of, 91, 176, 196;
encoding of information in,
100; and fl uid intelligence,
176– 178; number of digits
available in, 196; test
anxiety affecting, 91, 92
Writer’s block, 220– 221
Write- to- learn, 89– 90, 269n15;
and learning paragraphs, 89,
210, 232
Wynveen, Richard, 248– 250,
284n13
Young, Michael, 211– 215, 228,
283n1
Zayed bin Sultan Al Nahyan, 24
Brown, Peter C., et al. Make It Stick : The Science of Successful Learning, Harvard University Press, 2014.
ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/liberty/detail.action?docID=3301452.
Created from liberty on 2020-01-21 19:38:14.
C
op
yr
ig
ht
©
2
01
4.
H
ar
va
rd
U
ni
ve
rs
ity
P
re
ss
. A
ll
rig
ht
s
re
se
rv
ed
.

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.

Order your essay today and save 30% with the discount code ESSAYHELP