Signature Assignment
Hello,
Please read the assignment before bidding.
Thanks.
Assignment Content
Purpose of Assignment
The purpose of this assignment is for students to synthesize the concepts learned throughout the course. This assignment will provide students an opportunity to build critical thinking skills, develop businesses and organizations, and solve problems requiring data by compiling all pertinent information into one report.
Resources: Microsoft Excel®,
Signature Assignment Databases
,
Signature Assignment Options
,
Part 3: Inferential Statistics
Scenario: Upon successful completion of the MBA program, imagine you work in the analytics department for a consulting company. Your assignment is to analyze one of the following databases:
· Manufacturing
· Hospital
· Consumer Food
· Financial
Select one of the databases based on the information in the Signature Assignment Options.
Provide a 1,650-word detailed, four-part, statistical report with the following sections:
·
Part 1 – Preliminary Analysis
· Part 2 – Examination of Descriptive Statistics
· Part 3 – Examination of Inferential Statistics
· Part 4 – Conclusion/Recommendations
Part 1 – Preliminary Analysis
Generally, as a statistics consultant, you will be given a problem and data. At times, you may have to gather additional data. For this assignment, assume all the data is already gathered for you.
State the objective:
· What are the questions you are trying to address?
Describe the population in the study clearly and in sufficient detail:
· What is the sample?
Discuss the types of data and variables:
· Are the data quantitative or qualitative?
· What are levels of measurement for the data?
Part 2 – Descriptive Statistics
Examine the given data.
Present the descriptive statistics (mean, median, mode, range, standard deviation, variance, CV, and five-number summary).
Identify any outliers in the data.
Present any graphs or charts you think are appropriate for the data.
Note: Ideally, we want to assess the conditions of normality too. However, for the purpose of this exercise, assume data is drawn from normal populations.
Part 3 – Inferential Statistics
Use the Part 3: Inferential Statistics document.
· Create (formulate) hypotheses
· Run formal hypothesis tests
· Make decisions. Your decisions should be stated in non-technical terms.
Hint: A final conclusion saying “reject the null hypothesis” by itself without explanation is basically worthless to those who hired you. Similarly, stating the conclusion is false or rejected is not sufficient.
Part 4 – Conclusion and Recommendations
Include the following:
· What are your conclusions?
· What do you infer from the statistical analysis?
· State the interpretations in non-technical terms. What information might lead to a different conclusion?
· Are there any variables missing?
· What additional information would be valuable to help draw a more certain conclusion?
Format your assignment consistent with APA format.
Plagiarism Free
>Option – Manufacturer
1
3
0
7 1 2
4
7 1 6
2
1 0
6 0 07
1 30
1 40
74
3
1 8
6
1 3
72 10
21
1 1
8
12
5
1 21 15 2
7
2 3 2 7
42 2 2 2 8
2 6 4 2
2 52 3 07
57
7
3 13 12 1
3 17 13 7
3 9
21
3 3 55 44 3 76 06
4
3 61 47 3 27 22 4 6
4 45
7
4 38 32 6
2
4 17 14 9
4 34 28 3
450 4 1 1 34 71 17 4 31 25 5
4 224 3
76
7
4 83 68 5
1
5 147 5 209 4
32
5 51 43 9
5 68 6
5 94 78 5 64
80
5
6 70 53 1
6 37 29 447 6 81 61 5
6
6 54 39 8
6 15 11 7 90 7 55 42 5
7 212 68
7 63
7 92
3
8 82
8 7
6
8 3
8 604 07
72
8 8
1
8 21 12 9
577 8 65 50 504 8 8
236 8 67
98
9 79 96
9 13
3
9 126 75 1
32
9 9 126 75 86
5
9 37 24 77
30
9 7
5
9 6
80
18
10 4
10 14 8 10 65 54 11 8 7 11 61 46 7
11 1
11 598 21
74
11 15 12 3
404 12 163 35 12 7
2
716 12 2 2 53 85 62 12 6 4 199 12 8 7 328 75 12 7 6 233 40 12 7
282 13 60 51 7
13 64 50 13 17 13 13 7
13 45 36 600 13 39
0
6
13 263 13 13 221 96
14 106 14 35 26 14 15 11 694 14 162 123 70
2
14 94 79 14 32 23 14 33 27 9
3
15 140 107 50
4
15 45 32 3527 15 432 315 4
15 15 31
15 129 99 15 40 24 15 300 219 8
15 79 55 9
16 8
16 8
16 43
16 1
16 8
16 259 96 5
7
7
16 201 147 16 16 74 51 5
17 171 120 17 87 17 28
5
17 49 37 1
17 120 1
17 17 106 20
17 634 9
52
18 377 190 4
18 0
18 31 23 18 18 14 4
412 18 81 29 18 47 35 18 19 272 141 19 157 51
19 27 17 19 61 36 2290 19 382 177 19 43 30 20 13 10 506 328 20 76 4
20 20 24 19 997 415 20 9
20
2
1
SIC Code
No. Emp.
No. Prod. Wkrs.
Value Added by Mfg.
Cost of Materials
End Yr. Inven.
Indus. Grp.
2
0
4
3
3
7
23
5
1
8
78
13
3
6
30
20
1
31
83
15
72
42
74
31
57
203
204
1
6
9
2
4
50
27
22
87
32
204
10
70
21
67
37
40
34
205
220
137
207
12
120
1
1
55
206
89
69
1
26
1
36
3
61
207 26
18
4
25
19
130
1
94
208
14
3
52
3
35
71
99
209
17
126
20
54
1
96
313
2
11
23
44
555
5
506
212
28
1
63
213
150
314
155
214
6
24
2
62
554
221
47
2471
4
219
9
29
222 74 63
43
53
142
223
6
73
106
325
224
81
707
267
225
16
147
89
86
104
2083
226
51
41
31
45
4
140
6
97
227
40
76
7
125
14
46
228
84
38
8994
101
229
4
276
5
504
1
2
91
231
1
2
39
716
3
56
232
200
178
9423
8
92
2314
2
33
294
250
110
11
121
272
234
191
2
283
68
235
59
3
64
197
236
2063
181
237
238
144
1
321
526
239
1
79
10
60
123
274
241
5
77
9
66
578
242
172
10
404
19
2
85
3979
243
257
1
327
186
3
329
244
1
90
2
170
355
245
82
460
7290
5
80
2
49
5518
8
135
1
604
251
273
233
124
129
353
252
5
447
401
829
253
2290
5101
254
4
182
3
75
95
259
281
2
694
718
261
2201
3
279
725
262
116
1
88
48
20
596
4257
263
9
65
10604
1
502
265
163
156
24
634
3976
267 232 182
25918
289
5427
271
403
136
306
848
894
272 121 16
179
6940
1
216
273 136 57
1
785
8863
373
274 69 25
9
699
282
874
275
437
384
295
4
300
276 41 28
387
381
688
277
3
98
1047
278
4388
2055
279 55 39
4055
109
281 80 45
165
112
2644
282
115
25025
345
6
192
283 213 106
598
27
187
1
153
284
3
180
199
4
535
285 51 28
8497
9849
2178
286
288
46
93
8577
287
122
111
2
354
289 76 45
1
154
1
308
2749
291 67 43
2
600
1
328
107
295 25 18
346
6182
6
58
299
2187
4446
670
301
7079
7091
1067
302
442
496
175
305
4528
3805
105
306 122 95
7275
7
195
141
308
763
556
57264
118
311
131
1865
313 3 2
162
314 37 31
190
168
315
316
747
395
317
255
319
177
321 12 9
171
943
322
6532
352
1
505
323
4850
4254
883
324
3
509
2282
828
325 31 25
2
176
138
700
326
2696
1
183
327 205
152
157
1
701
196
328 17 13
999
565
329 72 53
7
838
5
432
1652
331
174
29180
456
12
198
332
128
9061
6913
1543
333
4200
11
184
1
834
334
1410
5
735
335
166
3
189
6
377
336
5856
4696
938
339
3
164
2
790
800
341
399
9
364
145
342
117
8720
312
343
4
412
1121
344
2
797
31527
7204
345 104 81
6
936
4909
1768
346 259
211
19880
215
3
997
347
7
793
6232
1181
348
3528
1689
1077
349
2171
19273
6460
351
10513
12
954
367
352 94 70
9
545
1
185
3339
353 205
133
1
817
23474
7344
354 295 211
22673
143
6730
355 192 110
1
922
16515
6823
356 265 172
23110
18543
789
357
4
113
60857
102
358
17521
2
1819
4857
359
392
293
25322
13897
4964
361
6700
5
523
149
362
14278
12657
3887
363
108
9
466
1
2578
2299
364 157 117
134
1106
3076
365
3459
762
1070
366
258
38705
2
959
9467
367
588
368
84059
44486
13145
369
151
139
13
398
3
514
371
772
10
589
223639
158
372
45220
42367
3681
373 141 108
7903
776
2165
374
2590
4363
1233
375
1435
167
376
9986
8120
4770
379
3564
5476
1102
381 186 68
2
1071
8760
6183
382
29028
18028
7681
384
268
310
16787
7761
385
2
390
1020
426
386
14032
8
114
387 6 4
415
391
2761
3646
1
451
393
685
394
103
8327
660
2608
395 35 26
2643
1789
799
396
1406
399 179 123
1
119
8530
2861
Option 2 –
Geog. Region | Control | Service | Census | Births | Personnel |
792 | |||||
1762 | |||||
2310 | |||||
100 | |||||
159 | 3810 | ||||
742 | |||||
173 | 1594 | ||||
169 | |||||
430 | |||||
2049 | 676 | ||||
2648 | |||||
2450 | |||||
146 | 755 | ||||
1993 | |||||
2275 | |||||
1 | 494 | 1091 | |||
1313 | 671 | ||||
753 | |||||
1 | 583 | 607 | |||
2017 | 929 | ||||
995 | |||||
2045 | 408 | ||||
1686 | 1251 | ||||
503 | |||||
202 | 2047 | ||||
1412 | 1343 | ||||
461 | 1517 | 1723 | |||
529 | |||||
414 | 2719 | 3694 | |||
1074 | 1042 | ||||
1421 | |||||
1 | 525 | ||||
3 | 194 | 1983 | |||
1442 | 1653 | ||||
1107 | |||||
298 | 841 | ||||
1064 | |||||
759 | 605 | ||||
1317 | |||||
1751 | 1165 | ||||
568 | |||||
507 | |||||
714 | 479 | ||||
2243 | 1456 | ||||
378 | 3 | 966 | 3486 | ||
1308 | 885 | ||||
2514 | 1001 | ||||
3714 | 330 | ||||
337 | |||||
1 | 193 | ||||
132 | 1 | 161 | |||
1217 | 1224 | ||||
2641 | 1704 | ||||
815 | |||||
520 | 712 | ||||
1168 | 1769 | ||||
875 | |||||
1618 | |||||
472 | |||||
297 | |||||
1284 | 847 | ||||
418 | 2154 | 3928 | |||
1231 | |||||
806 | 663 | ||||
820 | |||||
3968 | 2581 | ||||
1298 | |||||
3655 | 2534 | ||||
864 | |||||
3063 | |||||
827 | 973 | ||||
570 | 439 | ||||
1849 | |||||
127 | 549 | ||||
611 | |||||
1471 | |||||
575 | |||||
1275 | 1916 | ||||
516 | 5699 | 2620 | |||
1364 | 571 | ||||
703 | |||||
160 | |||||
779 | 1330 | ||||
370 | |||||
340 | 2202 | 3123 | |||
3346 | 2745 | ||||
576 | |||||
808 | |||||
728 | |||||
923 | 2462 | 4087 | |||
3311 | 3012 | ||||
4207 | 3090 | ||||
148 | 416 | 1358 | |||
1143 | 2312 | ||||
1124 | |||||
1026 | 1779 | ||||
338 | |||||
453 | |||||
609 | |||||
562 | 647 | ||||
2074 | |||||
2122 | 2232 | ||||
948 | |||||
409 | |||||
710 | 741 | ||||
1625 | |||||
538 | |||||
956 | |||||
637 | |||||
1227 | 2256 | ||||
963 | 731 | ||||
3038 | 1477 | ||||
868 | 939 | ||||
1189 | |||||
2849 | 3516 | ||||
1728 | |||||
188 | |||||
630 | |||||
2993 | 1379 | ||||
296 | 1108 | ||||
1964 | |||||
601 | |||||
1946 | 1593 | ||||
1055 | |||||
Option 3 – Consumer Food
Annual Food Spending ($) | Annual Household Income ($) | Non mortgage household debt ($) | Region: 1 = NE 2 = MW 3 = S 4 = W | Location: 1 = Metro 2 = Outside Metro |
8909 | 56697 | 23180 | ||
5684 | 35945 | 7052 | ||
10706 | 52687 | 16149 | ||
14112 | 74041 | 21839 | ||
13855 | 63182 | 18866 | ||
15619 | 79064 | 21899 | ||
2694 | 25981 | 8774 | ||
9127 | 57424 | 15766 | ||
13514 | 72045 | 27685 | ||
6314 | 38046 | 8545 | ||
7622 | 5 | 240 | 2805 | |
4322 | 41405 | 6998 | ||
29684 | 4806 | |||
6674 | 49246 | 13592 | ||
7347 | 41491 | 4088 | ||
2911 | 26703 | 15876 | ||
8026 | 48753 | 16714 | ||
8567 | 55555 | 16783 | ||
10345 | 71483 | 21407 | ||
8694 | 50 | 980 | 19114 | |
8821 | 46403 | 7817 | ||
8678 | 51927 | 1441 | ||
14331 | 84769 | 17295 | ||
9619 | 59062 | 16687 | ||
9286 | 57952 | 14161 | ||
8206 | 58355 | 19538 | ||
16408 | 81694 | 15187 | ||
12757 | 6 | 9522 | 14651 | |
17740 | 9 | 613 | ||
7739 | 57796 | 22057 | ||
15383 | 88276 | 1896 | ||
4579 | 3226 | 7979 | ||
11679 | 65928 | |||
12877 | 69924 | 27330 | ||
16232 | 91108 | 9876 | ||
9621 | 54070 | 1 | 9908 | |
8171 | 47238 | 17819 | ||
12128 | 77427 | 31340 | ||
8642 | 59805 | 4963 | ||
12400 | 60334 | 6632 | ||
9185 | 54114 | 18593 | ||
7862 | 40680 | 15202 | ||
9 | 775 | 58263 | 1486 | |
6771 | 52008 | 21 | 713 | |
3059 | 39643 | 12179 | ||
13211 | 70309 | 13221 | ||
7408 | 46450 | 5602 | ||
11581 | 76140 | 33874 | ||
14233 | 80833 | 11478 | ||
3352 | 31899 | 2762 | ||
2630 | 21647 | 2663 | ||
9093 | 65924 | 11355 | ||
12652 | 65923 | 5132 | ||
9559 | 62811 | 12613 | ||
6112 | 42335 | 3149 | ||
10431 | 65134 | 15196 | ||
12630 | 64621 | 21433 | ||
4578 | 36553 | 5502 | ||
9551 | 62910 | 11376 | ||
10262 | 70727 | 13287 | ||
57634 | 11857 | |||
10143 | 56549 | 16136 | ||
8955 | 59662 | 11627 | ||
10197 | 57350 | 18432 | ||
11234 | 56447 | 10871 | ||
9320 | 61136 | |||
9089 | 51526 | 4902 | ||
1 | 2300 | 79979 | 17270 | |
11484 | 66733 | 15145 | ||
11215 | 75359 | 15611 | ||
40795 | 8975 | |||
5579 | 39128 | 6576 | ||
1172 | 75482 | 12508 | ||
9353 | 63998 | |||
45845 | 6671 | |||
4261 | 38223 | 8576 | ||
9830 | 66787 | 1178 | ||
12386 | 77852 | |||
8673 | 55825 | 14167 | ||
10944 | 57022 | 9018 | ||
9910 | 6426 | 12768 | ||
9928 | 75881 | 17423 | ||
4264 | 34343 | 21323 | ||
7971 | 41243 | 21009 | ||
8290 | 53021 | 20151 | ||
12669 | 66991 | 9250 | ||
7272 | 49719 | 20838 | ||
9784 | 5839 | 16065 | ||
9187 | 50477 | 9407 | ||
5866 | 39112 | 20409 | ||
9456 | 5188 | 11668 | ||
6270 | 34797 | |||
9518 | 62348 | 5201 | ||
10968 | 78704 | 17002 | ||
8865 | 53620 | 32004 | ||
9226 | 51577 | 15922 | ||
4913 | 34761 | 17704 | ||
6976 | 60968 | 17799 | ||
8152 | 51281 | 8167 | ||
2887 | 25013 | 18763 | ||
8062 | 59238 | 10815 | ||
8895 | 47344 | 11814 | ||
8444 | 52645 | 22469 | ||
6148 | 35309 | 17139 | ||
4563 | 34355 | 10612 | ||
8185 | 50630 | 21187 | ||
3391 | 29056 | 15735 | ||
7436 | 48721 | 18363 | ||
50459 | 16478 | |||
11290 | 72805 | 21238 | ||
10403 | 56954 | 22218 | ||
4693 | 39343 | 24696 | ||
5626 | 38833 | 14371 | ||
11869 | 55021 | 35576 | ||
13055 | 77605 | |||
8783 | 57937 | 18591 | ||
13031 | 63343 | 25531 | ||
36479 | 17950 | |||
5549 | 40381 | 14257 | ||
4108 | 26309 | 26581 | ||
41421 | 22470 | |||
7700 | 54579 | 29065 | ||
7479 | 40551 | 31757 | ||
50369 | 6404 | |||
9863 | 54422 | 24334 | ||
8043 | 51836 | 26213 | ||
9552 | 73600 | 36374 | ||
51873 | 29631 | |||
7987 | 48003 | 1726 | ||
3875 | 36519 | 13579 | ||
10746 | 75152 | 10659 | ||
6888 | 44974 | 23711 | ||
5479 | 48923 | 4594 | ||
6949 | 43769 | 21221 | ||
10650 | 75947 | 33357 | ||
41423 | 33641 | |||
5311 | 40189 | 17791 | ||
4691 | 36772 | 5829 | ||
8056 | 59690 | 19594 | ||
11304 | 53654 | 23066 | ||
8112 | 59067 | |||
8696 | 65962 | |||
5869 | 37254 | 10157 | ||
3776 | 33568 | 14143 | ||
11829 | 56934 | |||
13087 | 88822 | 17565 | ||
10986 | 59635 | 27863 | ||
5762 | 38407 | 18867 | ||
11617 | 78627 | 11894 | ||
9895 | 47710 | 22930 | ||
16293 | 64443 | 31687 | ||
58871 | 35424 | |||
13 | 972 | 87954 | 11549 | |
11243 | 54778 | 12552 | ||
4635 | 39825 | 19494 | ||
10063 | 49536 | 12195 | ||
8426 | 60102 | 13787 | ||
49139 | 22356 | |||
11747 | 51052 | 4553 | ||
15397 | 70500 | 12025 | ||
6842 | 54894 | 16217 | ||
9678 | 60570 | 4106 | ||
12852 | 57625 | 31228 | ||
10114 | 56956 | 25907 | ||
8496 | 61400 | 1093 | ||
6689 | 50532 | 17106 | ||
15696 | 72774 | 17793 | ||
9841 | 69981 | 21607 | ||
1252 | 66891 | 17689 | ||
10210 | 67431 | 19995 | ||
8868 | 64782 | 14489 | ||
38987 | 17864 | |||
11096 | 64867 | |||
10086 | 50421 | 8689 | ||
2587 | 27076 | 17534 | ||
12492 | 51784 | 20284 | ||
8456 | 54135 | 22037 | ||
6801 | 53291 | 23342 | ||
6339 | 49804 | 34943 | ||
7802 | 52205 | 28579 | ||
9717 | 72841 | 22349 | ||
6026 | 46238 | 20165 | ||
5618 | 45938 | 10538 | ||
10217 | 77716 | 18516 | ||
8338 | 59711 | 7980 | ||
9048 | 42106 | 19786 | ||
4017 | 36462 | 9935 | ||
10906 | 53403 | 18177 | ||
15148 | 71290 | 6696 | ||
8830 | 66759 | 20972 | ||
8481 | 57616 | 28767 | ||
11358 | 76221 | 1373 | ||
10553 | 78202 | 5920 | ||
6969 | 55164 | 24795 | ||
13219 | 61171 | 21482 | ||
3543 | 34093 | 25969 | ||
7326 | 50647 | 10750 | ||
8458 | 59898 | 22940 | ||
11766 | 52884 | 25970 | ||
73629 | 7112 |
Option 4 – Financial
Company | Type | Total Revenues | Total Assets | Return on Equity | Earnings per Share | Dividends per Share | Average P/E Ratio | |||||||
AFLAC | 7251 | 29454 | 1 | 7.1 | 2.08 | 0.2 | 1 | 1.5 | ||||||
Albertson’s | 14690 | 5219 | 2 | 1.4 | 0.6 | |||||||||
Allstate | 20106 | 80918 | 20.1 | 3.56 | 0.3 | 10.6 | ||||||||
Amerada Hess | 8340 | 7935 | 0.08 | 69 | 8.3 | |||||||||
American General | 3362 | 80620 | 2.1 | 2 | 1.2 | |||||||||
American Stores | 19139 | 8536 | 12.2 | 1.01 | 0.34 | 23.5 | ||||||||
Amoco | 36287 | 32489 | 16.7 | 2.7 | 1 | 6.1 | ||||||||
Arco Chemical | 3995 | 4116 | 6.2 | 1.1 | 2.8 | 4 | 0.4 | |||||||
Ashland | 14319 | 7777 | 9.5 | 3.8 | 1 | 2.4 | ||||||||
Atlantic Richfield | 19272 | 2 | 1.8 | 5.41 | 2.83 | |||||||||
Bausch & Lomb | 2773 | 0.8 | 1.04 | 2.6 | ||||||||||
Baxter International | 6138 | 8707 | 11.5 | 1.06 | 1.13 | 4 | 7.2 | |||||||
Bristol-Myers Squibb | 16701 | 14977 | 44.4 | 3.14 | 1.52 | 24.1 | ||||||||
Burlington Coat | 1777 | 12.3 | 1.18 | 0.02 | 12.9 | |||||||||
Central Maine Power | 0.16 | 0.9 | 7 | 9.6 | ||||||||||
Chevron | 41950 | 35473 | 18.6 | 4.95 | 2.28 | 1 | 5.2 | |||||||
CIGNA | 14935 | 108199 | 13.7 | 4.8 | 11.4 | |||||||||
Cinergy | 4353 | 8858 | 13.3 | 1.59 | 22.4 | |||||||||
Dayton Hudson | 27757 | 14191 | 1.7 | 0.33 | 16.2 | |||||||||
Dillard’s | 6817 | 5592 | 9.2 | 2.31 | 15.7 | |||||||||
Dominion Resources | 7678 | 20193 | 7.9 | 2.15 | 2.58 | 1 | 7.7 | |||||||
Dow Chemical | 20018 | 24040 | 23.6 | 3.24 | 1 | 1.6 | ||||||||
DPL | 1356 | 3585 | 13.9 | 0.91 | 14.3 | |||||||||
E. I. DuPont DeNemours | 46653 | 42942 | 2 | 1.3 | 1.23 | 27.9 | ||||||||
Eastman Chemical | 4678 | 5778 | 16.3 | 3.63 | 1.76 | |||||||||
Edison International | 9235 | 25101 | 1.73 | 13.6 | ||||||||||
Engelhard | 3631 | 2586 | 0.38 | 61.8 | ||||||||||
Entergy | 9562 | 27001 | 4.2 | 1.03 | 25.4 | |||||||||
Equitable | 9666 | 151438 | 2.86 | 13.4 | ||||||||||
Ethyl | 53.6 | 0.71 | 0.5 | 12.6 | ||||||||||
Exxon | 137242 | 9 | 6064 | 1 | 9.4 | 3.37 | 1.63 | 17.1 | ||||||
FPL Group | 6369 | 12449 | 3.57 | 1.92 | 14.4 | |||||||||
The GAP | 6508 | 3338 | 33.7 | |||||||||||
Georgia Gulf | 2.39 | 0.32 | 11.8 | |||||||||||
GIANT Food | 4231 | 1522 | 0.78 | 2 | 6.9 | |||||||||
A & P | 2995 | 1.66 | 0.35 | 1 | 7.8 | |||||||||
Great Lakes Chemicals | 1311 | 2270 | 5.5 | 1.19 | 0.62 | 40.5 | ||||||||
Green Mountain Power Company | 1.57 | 1.61 | ||||||||||||
Hannaford Bros. | 9.9 | 0.54 | 26.6 | |||||||||||
Hercules | 1866 | 2411 | 3.18 | 14.5 | ||||||||||
Houston Industries | 6873 | 18415 | ||||||||||||
Jefferson-Pilot | 23131 | 3.47 | ||||||||||||
Johnson & Johnson | 22629 | 21453 | 26.7 | 2.41 | 0.85 | |||||||||
Liberty | 3185 | 11.1 | 3.34 | 0.77 | 12.7 | |||||||||
The Limited | 9189 | 4301 | 0.79 | 0.48 | ||||||||||
Lincoln National | 4899 | 77175 | 0.21 | 1.96 | 300.2 | |||||||||
Lubrizol | 1674 | 1462 | 2.66 | |||||||||||
Lyondell Petrochemical | 3010 | 1559 | 46.2 | 3.58 | 6.4 | |||||||||
Mallinkrodt | 1868 | 2988 | 14.8 | 2.47 | 0.66 | |||||||||
May Department Stores | 12685 | 9930 | 20.5 | 3.11 | ||||||||||
McKesson | 20857 | 5608 | ||||||||||||
Mercantile Stores | 3144 | 3.53 | ||||||||||||
Merck | 23637 | 25812 | 36.6 | 3.74 | 1.69 | |||||||||
Millennium Chemicals | 3048 | 4326 | ||||||||||||
Mobil | 65906 | 43559 | 16.8 | 4.01 | 2.12 | 17.2 | ||||||||
Monsanto | 7514 | 10774 | 90.7 | |||||||||||
Morton | 2388 | 1.48 | 25.2 | |||||||||||
Murphy Oil | 2138 | 2238 | 2.94 | 1.35 | ||||||||||
Mylan Laboratories | 13.5 | 0.82 | ||||||||||||
NALCO Chemical | 1434 | 18.3 | ||||||||||||
Nevada Power | 2339 | 10.1 | 1.65 | 14.2 | ||||||||||
NIPSCO | 4937 | 14.1 | 1.53 | |||||||||||
Olin | 2410 | 17.4 | ||||||||||||
Orion Capital | 1591 | 3884 | 4.15 | 9.8 | ||||||||||
Owens & Minor | 3117 | 0.18 | 21.7 | |||||||||||
Pacific Corporation | 6278 | 13880 | 0.68 | 1.08 | 34.2 | |||||||||
J. C. Penney | 30546 | 23493 | 2.13 | 26.9 | ||||||||||
Pennzoil | 2654 | 4406 | 1 | 5.8 | 3.76 | |||||||||
Pfizer | 12504 | 15336 | 35.4 | |||||||||||
Pharmacia & Upjohn | 6710 | 10380 | 0.61 | 56.2 | ||||||||||
Phillips Petroleum | 15424 | 13860 | 19.9 | 3.61 | 1.34 | 12.4 | ||||||||
Poe & Brown | 25.1 | |||||||||||||
PPG | 7379 | 6868 | 28.5 | 3.94 | 1.33 | 14.7 | ||||||||
PP&L Resources | 3049 | 9485 | 1.67 | |||||||||||
Progressive | 4190 | 7560 | 18.7 | 5.31 | 0.24 | |||||||||
Rohm & Haas | 3999 | 3900 | 19.8 | 0.63 | ||||||||||
Ruddick | 12.5 | 1.02 | ||||||||||||
Schering-Plough | 6778 | 6507 | 51.2 | 1.95 | 0.74 | 24.6 | ||||||||
Sears, Roebuck | 41296 | 38700 | 20.3 | 2.99 | 0.92 | |||||||||
Stryker | 985 | 1.28 | 0.11 | 27.2 | ||||||||||
Sun | 10531 | 4667 | ||||||||||||
Sunamerica | 2114 | 35637 | 19.5 | |||||||||||
Texaco | 46667 | 29600 | 20.9 | 4.87 | 1.75 | |||||||||
The TJX Companies | 7389 | 2610 | 26.3 | 0.09 | 8.2 | |||||||||
Torchmark | 2283 | 10967 | 1 | 7.5 | 0.59 | |||||||||
Tosco | 13282 | 5975 | 10.9 | 1.37 | ||||||||||
Travelers | 37609 | 386555 | 14.9 | 2.54 | ||||||||||
Ultramar Diamond Shamrock | 10882 | 5595 | 1.94 | 16.1 | ||||||||||
Union Carbide | 6502 | 6964 | 28.8 | 4.53 | 10.7 | |||||||||
United States Surgical Corporation | 1.21 | |||||||||||||
UNOCAL | 7530 | 28.9 | 2.65 | 15.5 | ||||||||||
UNUM | 4077 | 13200 | 15.2 | 2.59 | 0.56 | |||||||||
USX-Marathon | 15754 | 10565 | 1.58 | 0.76 | ||||||||||
Valero Energy | 5756 | 2493 | 2.03 | 0.42 | ||||||||||
Warner-Lambert | 8180 | 8031 | 30.7 | 0.51 | 35.7 | |||||||||
WEIS Markets | 1.87 | 0.94 | 16.9 | |||||||||||
Wellman | 1083 | 1319 | 0.97 | |||||||||||
Winn-Dixie Stores | 2921 | 15.3 | 1.36 | 0.98 | ||||||||||
WITCO | 2298 | 1.55 | 1.12 | 24.9 | ||||||||||
Zenith Nation Insurance |
Title ABC/ 1 23 Version X |
1 |
Week 6 Options QNT/561 Version 9 |
University of Phoenix Material
Option 1: Manufacturing Database
This database contains six variables taken from 20 industries and 140 subindustries in the United States. Some of the industries are food products, textile mill products, furniture, chemicals, rubber products, primary metals, industrial machinery, and transportation equipment. The six variables are Number of Employees, Number of Production Workers, Value Added by Manufacture, Cost of Materials, End-of-Year Inventories, and Industry Group. Two variables, Number of Employees and Number of Production Workers, are in units of 1000. Three variables, Value Added by Manufacture, Cost of Materials, and End-of-Year Inventories, are in million-dollar units. The Industry Group variable consists of numbers from 1 to 20 to denote the industry group to which the particular subindustry belongs.
Option 2: Hospital Database
This database contains observations for six variables on U.S. hospitals. These variables include Geographic Region, Control, Service, Census, Number of Births, and Personnel.
The region variable is coded from 1 to 7, and the numbers represent the following regions:
1 = South
2 = Northeast
3 = Midwest
4 = Southwest
5 = Rocky Mountain
6 = California
7 = Northwest
Control is a type of ownership. Four categories of control are included in the database:
1 = government, nonfederal
2 = nongovernment, not-for-profit
3 = for-profit
4 = federal government
Service is the type of hospital. The two types of hospitals used in this database are:
1 = general medical
2 = psychiatric
Option 3: Consumer Food
The consumer food database contains five variables: Annual Food Spending per Household, Annual Household Income, Non-Mortgage Household Debt, Geographic Region of the U.S. of the Household, and Household Location. There are 200 entries for each variable in this database representing 200 different households from various regions and locations in the United States. Annual Food Spending per Household, Annual Household Income, and Non-Mortgage Household Debt are all given in dollars. The variable Region tells in which one of four regions the household resides. In this variable, the Northeast is coded as 1, the Midwest is coded 2, the South is coded as 3, and the West is coded as 4. The variable Location is coded as 1 if the household is in a metropolitan area and 2 if the household is outside a metro area. The data in this database were randomly derived and developed based on actual national norms.
Option 4: Financial Database
The financial database contains observations on seven variables for 100 companies. The variables are Type of Industry, Total Revenues ($ millions), Total Assets ($ millions), Return on Equity (%), Earnings per Share ($), Dividends per Share ($), and Average Price per Earnings (P/E) ratio. The companies represent seven different types of industries. The variable Type displays a company’s industry type as:
1 = apparel
2 = chemical
3 = electric power
4 = grocery
5 = healthcare products
6 = insurance
7 = petroleum
Copyright © XXXX by University of Phoenix. All rights reserved.
Copyright © 2017 by University of Phoenix. All rights reserved.
Title ABC/ 1 23 Version X |
1 |
Week 6 Options QNT/561 Version 9 |
University of Phoenix Material
Option 1: Manufacturing Database
This database contains six variables taken from 20 industries and 140 subindustries in the United States. Some of the industries are food products, textile mill products, furniture, chemicals, rubber products, primary metals, industrial machinery, and transportation equipment. The six variables are Number of Employees, Number of Production Workers, Value Added by Manufacture, Cost of Materials, End-of-Year Inventories, and Industry Group. Two variables, Number of Employees and Number of Production Workers, are in units of 1000. Three variables, Value Added by Manufacture, Cost of Materials, and End-of-Year Inventories, are in million-dollar units. The Industry Group variable consists of numbers from 1 to 20 to denote the industry group to which the particular subindustry belongs.
Option 2: Hospital Database
This database contains observations for six variables on U.S. hospitals. These variables include Geographic Region, Control, Service, Census, Number of Births, and Personnel.
The region variable is coded from 1 to 7, and the numbers represent the following regions:
1 = South
2 = Northeast
3 = Midwest
4 = Southwest
5 = Rocky Mountain
6 = California
7 = Northwest
Control is a type of ownership. Four categories of control are included in the database:
1 = government, nonfederal
2 = nongovernment, not-for-profit
3 = for-profit
4 = federal government
Service is the type of hospital. The two types of hospitals used in this database are:
1 = general medical
2 = psychiatric
Option 3: Consumer Food
The consumer food database contains five variables: Annual Food Spending per Household, Annual Household Income, Non-Mortgage Household Debt, Geographic Region of the U.S. of the Household, and Household Location. There are 200 entries for each variable in this database representing 200 different households from various regions and locations in the United States. Annual Food Spending per Household, Annual Household Income, and Non-Mortgage Household Debt are all given in dollars. The variable Region tells in which one of four regions the household resides. In this variable, the Northeast is coded as 1, the Midwest is coded 2, the South is coded as 3, and the West is coded as 4. The variable Location is coded as 1 if the household is in a metropolitan area and 2 if the household is outside a metro area. The data in this database were randomly derived and developed based on actual national norms.
Option 4: Financial Database
The financial database contains observations on seven variables for 100 companies. The variables are Type of Industry, Total Revenues ($ millions), Total Assets ($ millions), Return on Equity (%), Earnings per Share ($), Dividends per Share ($), and Average Price per Earnings (P/E) ratio. The companies represent seven different types of industries. The variable Type displays a company’s industry type as:
1 = apparel
2 = chemical
3 = electric power
4 = grocery
5 = healthcare products
6 = insurance
7 = petroleum
Copyright © XXXX by University of Phoenix. All rights reserved.
Copyright © 2017 by University of Phoenix. All rights reserved.
Title ABC/ 1 2 3 Version X |
1 |
Part 3 Inferential Statistics QNT/561 Version 9 |
2 |
Part 3: Inferential Statistics
Option 1: Manufacturing Database
1. The National Association of Manufacturers (NAM) contracts with your consulting company to determine the estimate of mean number of production workers. Construct a 95% confidence interval for the population mean number of production workers. What is the point estimate? How much is the margin of error in the estimate?
2. Suppose the average number of employees per industry group in the manufacturing database is believed to be less than 150 (1000s). Test this belief as the alternative hypothesis by using the 140 SIC Code industries given in the database as the sample. Let α = .10. Assume that the number of employees per industry group are normally distributed in the population.
3. You are also required to determine whether there is a significant difference between mean Value Added by the Manufacturer and the mean Cost of Materials in manufacturing using alpha of 0.01.
4. You are requested to determine whether there is a significantly greater variance among values of Cost of Materials than of End-of-Year Inventories.
Option 2: Hospital Database
1. As a consultant, you need to use the Hospital database and construct a 90% confidence interval to estimate the average census for hospitals. Change the level of confidence to 99%. What happened to the interval? Did the point estimate change?
2. Determine the sample proportion of the Hospital database under the variable “service” that are “general medical” (category 1). From this statistic, construct a 95% confidence interval to estimate the population proportion of hospitals that are “general medical.” What is the point estimate? How much error is there in the interval?
3. Suppose you want to “prove” that the average hospital in the United States averages more than 700 births per year. Use the hospital database as your sample and test this hypothesis. Let alpha be 0.01.
4. On average, do hospitals in the United States employ fewer than 900 personnel? Use the hospital database as your sample and an alpha of 0.10 to test this figure as the alternative hypothesis. Assume that the number of births and number of employees in the hospitals are normally distributed in the population.
Option 3: Consumer Food
1. Suppose you want to test to determine if the average annual food spending for a household in the Midwest region of the U.S. is more than $8,000. Use the Midwest region data and a 1% level of significance to test this hypothesis. Assume that annual food spending is normally distributed in the population.
2. Test to determine if there is a significant difference between households in a metro area and households outside metro areas in annual food spending. Let α = 0.01.
3. The Consumer Food database contains data on Annual Food Spending, Annual Household Income, and Non-Mortgage Household Debt broken down by Region and Location. Using Region as an independent variable with four classification levels (four regions of the U.S.), perform three different one-way ANOVA‘s—one for each of the three dependent variables (Annual Food Spending, Annual Household Income, Non-Mortgage Household Debt). Did you find any significant differences by region?
Option 4: Financial Database
1. Use this database as a sample and estimate the earnings per share for all corporations from these data. Select several levels of confidence and compare the results.
2. Are the average earnings per share for companies in the stock market less than $2.50? Use the sample of companies represented by this database to test that hypothesis. Let α = .05.
3. Test to determine whether the average return on equity for all companies is equal to 21. Use this database as the sample and α = .10. Assume that the earnings per share and return on equity are normally distributed in the population.
4. Do various financial indicators differ significantly according to type of company? Use a one-way ANOVA and the financial database to answer this question. Let Type of Company be the independent variable with seven levels (Apparel, Chemical, Electric Power, Grocery, Healthcare Products, Insurance, and Petroleum). Compute three one-way ANOVAs, one for each of the following dependent variables: Earnings Per Share, Dividends Per Share, and Average P/E Ratio.
Copyright © XXXX by University of Phoenix. All rights reserved.
Copyright © 2017 by University of Phoenix. All rights reserved.